GeochronologyPub Date : 2024-07-26DOI: 10.5194/gchron-6-429-2024
B. Härtel, Eva Enkelmann
{"title":"The daughter–parent plot: a tool for analyzing thermochronological data","authors":"B. Härtel, Eva Enkelmann","doi":"10.5194/gchron-6-429-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-429-2024","url":null,"abstract":"Abstract. Data plots of daughter against parent concentration (D–P plots) are a potential tool for analyzing low-temperature thermochronology, similar to isochron plots in radioisotopic geochronology. Their purposes are to visualize the main term of the radiometric age equation – the daughter–parent ratio – and to inspect the daughter–parent relationship for anomalies indicating influences of geological processes or analytical bias. The main advantages of the D–P plot over other data analysis tools are (1) its ability to detect systematic offsets in D and P concentrations, (2) its unambiguous representation of radiation-damage-dependent daughter retention, and (3) the possibility to analyze potential age outliers. Despite these benefits, the D–P plot is currently not used for analyzing low-temperature thermochronology data, e.g., from fission-track, (U–Th) / He, or zircon Raman dating. We present a simple, decision-tree-based classification for daughter–parent relationships based on the D–P plot that places a dataset into one of seven classes: linear relationship with zero intercept, cluster, linear relationship with systematic offset, nonlinear relationship, several age populations, scattered data, and inverse relationship. Assigning a class to a dataset enables choosing further data analysis steps and how to report a sample age, e.g., as a pooled, central, or isochron age or a range of ages. This classification scheme aims at facilitating thermochronological data analysis and making decisions more transparent. We demonstrate the proposed procedure by analyzing published datasets from a variety of geological settings and thermochronometers and introduce Incaplot, which is graphical user interface software that we developed to facilitate D–P plotting of thermochronology data.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-22DOI: 10.5194/gchron-6-409-2024
K. Prince, J. Briner, C. Walcott, Brooke M. Chase, Andrew L Kozlowski, T. Rittenour, Erica P. Yang
{"title":"New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA","authors":"K. Prince, J. Briner, C. Walcott, Brooke M. Chase, Andrew L Kozlowski, T. Rittenour, Erica P. Yang","doi":"10.5194/gchron-6-409-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-409-2024","url":null,"abstract":"Abstract. The timing of the last deglaciation of the Laurentide Ice Sheet in western New York is poorly constrained. The lack of direct chronology in the region has led to a hypothesis that the Laurentide Ice Sheet re-advanced to near its Last Glacial Maximum terminal position in western New York at ∼ 13 ka, which challenges long-standing datasets. To address this hypothesis, we obtained new chronology from the Kent (terminal) and Lake Escarpment (first major recessional) moraines using radiocarbon ages in sediment cores from moraine kettles supplemented with two optically stimulated luminescence ages from topset beds in an ice-contact delta. The two optically stimulated luminescence ages date the Kent (terminal) position to 19.8 ± 2.6 and 20.6 ± 2.9 ka. Within the sediment cores, there is sedimentological evidence of an unstable landscape during basin formation; radiocarbon ages from the lowest sediments in our cores are not in stratigraphic order and date from 19 350–19 600 to 14 050–14 850 cal BP. We interpret these ages as loosely minimum-limiting constraints on ice sheet retreat. Our oldest radiocarbon age of 19 350–19 600 cal BP – from a rip-up clast – suggests ice-free conditions at that time. Above the lowest sediments there is organic-rich silt and radiocarbon ages in stratigraphic order. We interpret the lowest ages in these organic-rich sediments as minimum-limiting constraints on kettle basin formation. The lowest radiocarbon ages from organic-rich sediments from sites on both Kent and Lake Escarpment moraines range from 15 000–15 400 to 13 600–14 000 cal BP. We interpret the 5 kyr lag between the optically stimulated luminescence ages and kettle basin formation as the result of persistent buried ice in ice-cored moraines until ∼ 15 to 14 ka. The cold conditions associated with Heinrich Stadial 1 may have enabled the survival of ice-cored moraines until after 15 ka, and, in turn, climate amelioration during the Bølling period (14.7–14.1 ka) may have initiated landscape stabilization. This model potentially reconciles the sedimentological and chronological evidence underpinning the re-advance hypothesis, which instead could be the result of moraine instability and sediment mobilization during the Bølling–Allerød periods (14.7–13 ka). Age control for future work should focus on features that are not dependent on local climate.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-18DOI: 10.5194/gchron-6-397-2024
Pieter Vermeesch
{"title":"Errorchrons and anchored isochrons in IsoplotR","authors":"Pieter Vermeesch","doi":"10.5194/gchron-6-397-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-397-2024","url":null,"abstract":"Abstract. Isochrons are usually fitted by “York regression”, which uses a weighted least-squares approach that accounts for correlated uncertainties in both variables. Despite its tremendous popularity in modern geochronology, the York algorithm has two important limitations that reduce its utility in several applications. First, it does not provide a satisfactory mechanism to deal with so-called “errorchrons”, i.e. datasets that are overdispersed with respect to the analytical uncertainties. Second, York regression is not readily amenable to anchoring, in which either the slope or the intercept of the isochron is fixed based on some external information. Anchored isochrons can be very useful in cases where the data are insufficiently spread out to constrain both the radiogenic and non-radiogenic isotopic composition. This paper addresses both of these issues by extending a maximum likelihood algorithm that was first proposed by Titterington and Halliday (1979). The new algorithm offers the ability to attribute any excess dispersion to either the inherited component (“model 3a”) or diachronous closure of the isotopic system (“model 3b”). It provides an opportunity to anchor isochrons to either a fixed non-radiogenic composition or a fixed age. Last but not least, it allows the user to attach meaningful analytical uncertainty to the anchor. The new method has been implemented in IsoplotR for immediate use in Ar/Ar, Pb/Pb, U/Pb, Th/Pb, Rb/Sr, Sm/Nd, Lu/Hf, Re/Os, K/Ca, and U–Th–He geochronology.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-10DOI: 10.5194/gchron-6-337-2024
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Y. Amelin, Sandra L Kamo, T. Ireland
{"title":"Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses","authors":"Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Y. Amelin, Sandra L Kamo, T. Ireland","doi":"10.5194/gchron-6-337-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-337-2024","url":null,"abstract":"Abstract. This study assesses the effect of chemical abrasion on in situ mass spectrometric isotopic and elemental analyses in zircon. Chemical abrasion improves the U–Pb systematics of SIMS (secondary ion mass spectrometry) analyses of reference zircons, while leaving other isotopic systems largely unchanged. SIMS 206Pb/238U ages of chemically abraded reference materials TEMORA-2, 91500, QGNG, and OG1 are precise to within 0.25 % to 0.4 % and are within uncertainty of chemically abraded TIMS (thermal ionization mass spectrometry) reference ages, while SIMS 206Pb/238U ages of untreated zircons are within uncertainty of TIMS reference ages where chemical abrasion was not used. Chemically abraded and untreated zircons appear to cross-calibrate within uncertainty using all but one possible permutation of reference materials, provided that the corresponding chemically abraded or untreated reference age is used for the appropriate material. In the case of reference zircons QGNG and OG1, which are slightly discordant, the SIMS U–Pb ages of chemically abraded and untreated material differ beyond their respective 95 % confidence intervals. SIMS U–Pb analysis of chemically abraded zircon with multiple growth stages is more difficult to interpret. Treated igneous rims on zircon crystals from the S-type Mount Painter Volcanics are much lower in common Pb than the rims on untreated zircon grains. However, the analyses of chemically abraded material show excess scatter. Chemical abrasion also changes the relative abundance of the ages of zircon cores inherited from the sedimentary protolith, presumably due to some populations being more likely to survive the chemical abrasion process than others. We consider these results from inherited S-type zircon cores to be indicative of results for detrital zircon grains from unmelted sediments. Trace element, δ18O, and εHf analyses were also performed on these zircons. None of these systems showed substantial changes as a result of chemical abrasion. The most discordant reference material, OG1, showed a loss of OH as a result of chemical abrasion, presumably due to dissolution of hydrous metamict domains or thermal dehydration during the annealing step of chemical abrasion. In no case did zircon gain fluorine due to exchange of lattice-bound substituted OH or other anions with fluorine during the HF partial dissolution phase of the chemical abrasion process. As the OG1, QGNG, and TEMORA-2 zircon samples are known to be compositionally inhomogeneous in trace element composition, spot-to-spot differences dominated the trace element results. Even the 91500 megacrystic zircon pieces exhibited substantial chip-to-chip variation. The light rare earth elements (LREEs) in chemically abraded OG1 and TEMORA-2 were lower than in the untreated samples. Ti concentration and phosphorus saturation ((Y + REE) / P) were generally unchanged in all samples.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-10DOI: 10.5194/gchron-6-365-2024
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, P. Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, D. B. Townsend, J. Cole, C. Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, B. Tibari
{"title":"Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand","authors":"Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, P. Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, D. B. Townsend, J. Cole, C. Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, B. Tibari","doi":"10.5194/gchron-6-365-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-365-2024","url":null,"abstract":"Abstract. Accurate volcanic hazard assessments rely on a detailed understanding of the timing of past eruptions. While radiometric methods like 40Ar/39Ar or K/Ar are by far the most conventional lava flow dating tools, their low resolution for young (<20 ka) deposits interferes with the development of precise chronologies of recent effusive activity on most volcanoes. Mt Ruapehu (Aotearoa / New Zealand) has produced many lava flows throughout its history, but the precise timing of many recent eruptions remains largely unknown. In this study, we use cosmogenic 3He exposure dating to provide 23 eruption ages of young lava flows at Ruapehu. We then compare our results with existing 40Ar/39Ar and paleomagnetic constraints, highlighting the value of cosmogenic nuclide exposure dating in refining recent eruptive chronologies. Of the 23 sampled flows, 16 provided robust eruption ages (5 %–20 % internal 2σ; n≥3) between ca. 20 and 8 ka, except for one lava flow that erupted at around 43 ka, and their age distribution indicates that, during the last 20 kyr, effusive activity at Ruapehu peaked at 17–12 ka and at 9–7.5 ka. Nearly identical eruption ages of lavas located in different flanks of the volcanic edifice suggest concurrent activity from multiple vents during relatively short time intervals (0–2 kyr) at around 13, 10, and 8 ka. We analysed four individual lava flows previously dated by 40Ar/39Ar, two of which yield eruption ages older than the older limit of the 2σ interval of the radiometric dates, but the good clustering of individual samples from our sites suggests that our results better represent the real eruption age of these flows. Our 3He-based chronology shows excellent agreement with paleomagnetic constraints, suggesting that production rate uncertainties are unlikely to impact the accuracy of our eruption ages. This study demonstrates how cosmogenic nuclide dating can provide greater detail on the recent effusive chronology of stratovolcanoes, helping to resolve the low resolution of and difficulty in applying radiometric dating methods to young lava flows.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141661394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-02DOI: 10.5194/gchron-6-303-2024
K. Larson, Brendan Dyck, S. Shrestha, Mark Button, Y. Najman
{"title":"On the viability of detrital biotite Rb–Sr geochronology","authors":"K. Larson, Brendan Dyck, S. Shrestha, Mark Button, Y. Najman","doi":"10.5194/gchron-6-303-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-303-2024","url":null,"abstract":"Abstract. Re-examination of International Ocean Discovery Program (IODP) sediment samples collected from the Bay of Bengal via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) Rb–Sr geochronology demonstrates the viability of the biotite Rb–Sr system for use as a detrital chronometer. The age population defined by the Rb–Sr dates essentially reproduces that previously published for detrital 40Ar/39Ar dates. The effect of unknown/assumed initial 87Sr/86Sr on the calculated population can be ameliorated by filtering for higher 87Rb/86Sr ratios. Such filtering, however, could introduce bias toward more radiogenic populations, especially in younger material that has not had time to accumulate radiogenic product (e.g. limiting the effect of initial 87Sr/86Sr to ∼ <5 % requires filtering of 87Rb/86Sr\u0000>500 at 250 Ma and 87Rb/86Sr >50 at 2500 Ma). Finally, Ti-in-biotite temperatures calculated based on element concentration data collected during LA-ICP-MS overlap with those calculated for the same material based on electron probe microanalyzer data, demonstrating the potential for in situ biotite petrochronology based on the Rb–Sr system.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141686455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-07-01DOI: 10.5194/gchron-6-291-2024
B. Goodfellow, A. Stroeven, N. Lifton, J. Heyman, Alexander Lewerentz, K. Hippe, J. Näslund, M. Caffee
{"title":"Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz","authors":"B. Goodfellow, A. Stroeven, N. Lifton, J. Heyman, Alexander Lewerentz, K. Hippe, J. Näslund, M. Caffee","doi":"10.5194/gchron-6-291-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-291-2024","url":null,"abstract":"Abstract. In situ cosmogenic 14C (in situ 14C) in quartz provides a recently developed tool to date exposure of bedrock surfaces of up to ∼ 25 000 years. From outcrops located in east-central Sweden, we tested the accuracy of in situ 14C dating against (i) a relative sea level (RSL) curve constructed from radiocarbon dating of organic material in isolation basins and (ii) the timing of local deglaciation constructed from a clay varve chronology complemented with traditional radiocarbon dating. Five samples of granitoid bedrock were taken along an elevation transect extending southwestwards from the coast of the Baltic Sea near Forsmark. Because these samples derive from bedrock outcrops positioned below the highest postglacial shoreline, they target the timing of progressive landscape emergence above sea level. In contrast, in situ 14C concentrations in an additional five samples taken from granitoid outcrops above the highest postglacial shoreline, located 100 km west of Forsmark, should reflect local deglaciation ages. The 10 in situ 14C measurements provide robust age constraints that, within uncertainties, compare favourably with the RSL curve and the local deglaciation chronology. These data demonstrate the utility of in situ 14C to accurately date ice sheet deglaciation, and durations of postglacial exposure, in regions where cosmogenic 10Be and 26Al routinely return complex exposure results.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-06-13DOI: 10.5194/gchron-6-247-2024
Loïc A. Martin, J. Nouet, A. Dapoigny, G. Barbotin, F. Claverie, E. Pons‐Branchu, J. Barbarand, C. Pécheyran, N. Mercier, Fanny Derym, Bernard Gély, H. Valladas
{"title":"A new multimethod approach for dating cave calcite: application to the cave of Trou du Renard (Soyons, France)","authors":"Loïc A. Martin, J. Nouet, A. Dapoigny, G. Barbotin, F. Claverie, E. Pons‐Branchu, J. Barbarand, C. Pécheyran, N. Mercier, Fanny Derym, Bernard Gély, H. Valladas","doi":"10.5194/gchron-6-247-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-247-2024","url":null,"abstract":"Abstract. A multimethod approach aimed at characterizing carbonate parietal deposits and at proposing a chronology for these carbonate crusts is described. Dating was performed by radiometric methods (C-14 for recent samples and U series) on samples that had been characterized beforehand using optical and cathodoluminescence microscopy and Fourier transform infrared microspectroscopy. For the U series, high precision on U–Th ages was achieved using liquid phase multicollector inductively coupled plasma mass spectrometry (ICP-MS) applied to large samples, while laser ablation single collector inductively coupled plasma sector field mass spectrometry (ICP-SFMS) provided information on the reliability of the sampling with a high spatial resolution. This methodology, based on the combination of these two techniques reinforced by the information obtained by the calcite characterization methods, was applied to carbonate deposits from the cave of Trou du Renard (Soyons, France). The ages obtained with the two U–Th dating techniques are comparable and illustrate that different laminae were deposited at different rates in the samples. In the future, this procedure, based on the mineralogical and geochemical characterization of the samples and their dating by radiometric methods, will be applied to the layers of parietal carbonates deposited on Palaeolithic decorated walls. When the crystallization is slow, the U/Th dating method by imaging technique is of interest, as well as that by multicollector ICP-MS in liquid phase. The development of robust dating methods on very small quantities of material will make it possible to define the chronological framework of cave rock art.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141348111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-06-12DOI: 10.5194/gchron-6-227-2024
R. Jiao, Shengze Cai, Jean Braun
{"title":"Solving crustal heat transfer for thermochronology using physics-informed neural networks","authors":"R. Jiao, Shengze Cai, Jean Braun","doi":"10.5194/gchron-6-227-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-227-2024","url":null,"abstract":"Abstract. We present a deep-learning approach based on the physics-informed neural networks (PINNs) for estimating thermal evolution of the crust during tectonic uplift with a changing landscape. The approach approximates the temperature field of the crust with a deep neural network, which is trained by optimizing the heat advection–diffusion equation, assuming initial and boundary temperature conditions that follow a prescribed topographic history. From the trained neural network of temperature field and the prescribed velocity field, one can predict the temperature history of a given rock particle that can be used to compute the cooling ages of thermochronology. For the inverse problem, the forward model can be combined with a global optimization algorithm that minimizes the misfit between predicted and observed thermochronological data, in order to constrain unknown parameters in the rock uplift history or boundary conditions. We demonstrate the approach with solutions of one- and three-dimensional forward and inverse models of the crustal thermal evolution, which are consistent with results of the finite-element method. As an example, the three-dimensional model simulates the exhumation and post-orogenic topographic decay of the Dabie Shan, eastern China, whose post-orogenic evolution has been constrained by previous thermochronological data and models. This approach takes advantage of the computational power of machine learning algorithms, offering a valuable alternative to existing analytical and numerical methods, with great adaptability to diverse boundary conditions and easy integration with various optimization schemes.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeochronologyPub Date : 2024-06-10DOI: 10.5194/gchron-6-199-2024
Spencer D. Zeigler, Morgan Baker, J. Metcalf, R. Flowers
{"title":"The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations","authors":"Spencer D. Zeigler, Morgan Baker, J. Metcalf, R. Flowers","doi":"10.5194/gchron-6-199-2024","DOIUrl":"https://doi.org/10.5194/gchron-6-199-2024","url":null,"abstract":"Abstract. The conventional zircon (U–Th) / He (ZHe) method typically uses microscopy measurements of the dated grain together with the assumption that the zircon can be appropriately modeled as a geometrically perfect tetragonal or ellipsoidal prism in the calculation of volume (V), alpha-ejection correction (FT), equivalent spherical radius (RFT), effective uranium concentration (eU), and corrected (U–Th) / He date. Here, we develop a set of corrections for systematic error and determine uncertainties to be used in the calculation of the above parameters for zircon, using the same methodology as Zeigler et al. (2023) for apatite. Our approach involved acquiring both “2D” microscopy measurements and high-resolution “3D” nano-computed tomography (CT) data for a suite of 223 zircon grains from nine samples showcasing a wide range of morphology, size, age, and lithological source, calculating the V, FT, and RFT values for the 2D and 3D measurements and comparing the 2D vs. 3D results. We find that the values derived from the 2D microscopy data overestimate the true 3D V, FT, and RFT values for zircon, with one exception (V of ellipsoidal grains). Correction factors for this misestimation determined by regressing the 3D vs. 2D data range from 0.81–1.04 for V, 0.97–1.0 for FT, and 0.92–0.98 for RFT, depending on zircon geometry. Uncertainties (1σ) derived from the scatter of data around the regression line are 13 %–21 % for V, 5 %–1 % for FT, and 8 % for RFT, again depending on zircon morphologies. Like for apatite, the main control on the magnitude of the corrections and uncertainties is grain geometry, with grain size being a secondary control on FT uncertainty. Propagating these uncertainties into a real dataset (N=28 ZHe analyses) generates 1σ uncertainties of 12 %–21 % in eU and 3 %–7 % in the corrected ZHe date when both analytical and geometric uncertainties are included. Accounting for the geometric corrections and uncertainties is important for appropriately reporting, plotting, and interpreting ZHe data. For both zircon and apatite, the Geometric Correction Method is a practical and straightforward approach for calculating more accurate (U–Th) / He data and for including geometric uncertainty in eU and date uncertainties.\u0000","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}