Geochemical Transactions最新文献

筛选
英文 中文
Eu(III) and Am(III) adsorption on aluminum (hydr)oxide minerals: surface complexation modeling Eu(III)和Am(III)在铝(水)氧化物矿物上的吸附:表面络合模拟
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2023-06-20 DOI: 10.1186/s12932-023-00081-5
Anshuman Satpathy, Amy E. Hixon
{"title":"Eu(III) and Am(III) adsorption on aluminum (hydr)oxide minerals: surface complexation modeling","authors":"Anshuman Satpathy, Amy E. Hixon","doi":"10.1186/s12932-023-00081-5","DOIUrl":"10.1186/s12932-023-00081-5","url":null,"abstract":"<div><p>Americium is a highly radioactive actinide element found in used nuclear fuel. Its adsorption on aluminum (hydr)oxide minerals is important to study for at least two reasons: (i) aluminum (hydr)oxide minerals are ubiquitous in the subsurface environment and (ii) bentonite clays, which are proposed engineered barriers for the geologic disposal of used nuclear fuel, have the same ≡AlOH sites as aluminum (hydr)oxide minerals. Surface complexation modeling is widely used to interpret the adsorption behavior of heavy metals on mineral surfaces. While americium sorption is understudied, multiple adsorption studies for europium, a chemical analog, are available. In this study we compiled data describing Eu(III) adsorption on three aluminum (hydr)oxide minerals—corundum (α-Al<sub>2</sub>O<sub>3</sub>), γ-alumina (γ-Al<sub>2</sub>O<sub>3</sub>) and gibbsite (γ-Al(OH)<sub>3</sub>)—and developed surface complexation models for Eu(III) adsorption on these minerals by employing diffuse double layer (DDL) and charge distribution multisite complexation (CD-MUSIC) electrostatic frameworks. We also developed surface complexation models for Am(III) adsorption on corundum (α-Al<sub>2</sub>O<sub>3</sub>) and γ-alumina (γ-Al<sub>2</sub>O<sub>3</sub>) by employing a limited number of Am(III) adsorption data sourced from literature. For corundum and γ-alumina, two different adsorbed Eu(III) species, one each for strong and weak sites, were found to be important regardless of which electrostatic framework was used. The formation constant of the weak site species was almost 10,000 times weaker than the formation constant for the corresponding strong site species. For gibbsite, two different adsorbed Eu(III) species formed on the single available site type and were important for the DDL model, whereas the best-fit CD-MUSIC model for Eu(III)-gibbsite system required only one Eu(III) surface species. The Am(III)-corundum model based on the CD-MUSIC framework had the same set of surface species as the Eu(III)-corundum model. However, the log K values of the surface reactions were different. The best-fit Am(III)-corundum model based on the DDL framework had only one site type. Both the CD-MUSIC and the DDL model developed for Am(III)-γ-alumina system only comprised of one site type and the formation constant of the corresponding surface species was ~ 500 times stronger and ~ 700 times weaker than the corresponding Eu(III) species on the weak and the strong sites, respectively. The CD-MUSIC model for corundum and both the DDL and the CD-MUSIC models for γ-alumina predicted the Am(III) adsorption data very well, whereas the DDL model for corundum overpredicted the Am(III) adsorption data. The root mean square of errors of the DDL and CD-MUSIC models developed in this study were smaller than those of two previously-published models describing Am(III)-γ-alumina system, indicating the better predictive capacity of our models. Overall, our results suggest that using Eu(III)","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"24 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geochemicaltransactions.biomedcentral.com/counter/pdf/10.1186/s12932-023-00081-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4799034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated mineral bio-carbonation of coarse residue kimberlite material by inoculation with photosynthetic microbial mats 通过接种光合微生物垫加速金伯利岩粗渣材料的矿物生物碳化作用
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2023-06-16 DOI: 10.1186/s12932-023-00082-4
Thomas Ray Jones, Jordan Poitras, Emma Gagen, David John Paterson, Gordon Southam
{"title":"Accelerated mineral bio-carbonation of coarse residue kimberlite material by inoculation with photosynthetic microbial mats","authors":"Thomas Ray Jones,&nbsp;Jordan Poitras,&nbsp;Emma Gagen,&nbsp;David John Paterson,&nbsp;Gordon Southam","doi":"10.1186/s12932-023-00082-4","DOIUrl":"10.1186/s12932-023-00082-4","url":null,"abstract":"<div><p>Microbiological weathering of coarse residue deposit (CRD) kimberlite produced by the Venetia Diamond Mine, Limpopo, South Africa enhanced mineral carbonation relative to untreated material. Cultures of photosynthetically enriched biofilm produced maximal carbonation conditions when mixed with kimberlite and incubated under near surface conditions. Interestingly, mineral carbonation also occurred in the dark, under water-saturated conditions. The examination of mineralized biofilms in ca. 150 µm-thick-sections using light microscopy, X-ray fluorescence microscopy (XFM) and backscatter electron—scanning electron microscopy-energy dispersive x-ray spectrometry demonstrated that microbiological weathering aided in producing secondary calcium/magnesium carbonates on silicate grain boundaries. Calcium/magnesium sulphate(s) precipitated under vadose conditions demonstrating that evaporites formed upon drying. In this system, mineral carbonation was only observed in regions possessing bacteria, preserved within carbonate as cemented microcolonies. 16S rDNA molecular diversity of bacteria in kimberlite and in natural biofilms growing on kimberlite were dominated by Proteobacteria that are active in nitrogen, phosphorus and sulphur cycling. Cyanobacteria based enrichment cultures provided with nitrogen &amp; phosphorus (nutrients) to enhance growth, possessed increased diversity of bacteria, with Proteobacteria re-establishing themselves as the dominant bacterial lineage when incubated under dark, vadose conditions consistent with natural kimberlite. Overall, 16S rDNA analyses revealed that weathered kimberlite hosts a diverse microbiome consistent with soils, metal cycling and hydrocarbon degradation. Enhanced weathering and carbonate-cemented microcolonies demonstrate that microorganisms are key to mineral carbonation of kimberlite.</p></div>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"24 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geochemicaltransactions.biomedcentral.com/counter/pdf/10.1186/s12932-023-00082-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4650137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved volume variable cluster model method for crystal-lattice optimization: effect on isotope fractionation factor 改进体积变簇模型法优化晶体晶格:对同位素分馏因子的影响
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2022-05-22 DOI: 10.1186/s12932-022-00078-6
Yan-Fang Wang, Xin-Yue Ji, Le-Cai Xing, Peng-Dong Wang, Jian Liu, Tian-Di Zhang, Hao-Nan Zhao, Hong-Tao He
{"title":"Improved volume variable cluster model method for crystal-lattice optimization: effect on isotope fractionation factor","authors":"Yan-Fang Wang,&nbsp;Xin-Yue Ji,&nbsp;Le-Cai Xing,&nbsp;Peng-Dong Wang,&nbsp;Jian Liu,&nbsp;Tian-Di Zhang,&nbsp;Hao-Nan Zhao,&nbsp;Hong-Tao He","doi":"10.1186/s12932-022-00078-6","DOIUrl":"10.1186/s12932-022-00078-6","url":null,"abstract":"<div><p>The isotopic fractionation factor and element partition coefficient can be calculated only after the geometric optimization of the molecular clusters is completed. Optimization directly affects the accuracy of some parameters, such as the average bond length, molecular volume, harmonic vibrational frequency, and other thermodynamic parameters. Here, we used the improved volume variable cluster model (VVCM) method to optimize the molecular clusters of a typical oxide, quartz. We documented the average bond length and relative volume change. Finally, we extracted the harmonic vibrational frequencies and calculated the equilibrium fractionation factor of the silicon and oxygen isotopes. Given its performance in geometrical optimization and isotope fractionation factor calculation, we further applied the improved VVCM method to calculate isotope equilibrium fractionation factors of Cd and Zn between the hydroxide (Zn–Al layered double hydroxide), carbonate (cadmium-containing calcite) and their aqueous solutions under superficial conditions. We summarized a detailed procedure and used it to re-evaluate published theoretical results for cadmium-containing hydroxyapatite, emphasizing the relative volume change for all clusters and confirming the optimal point charge arrangement (PCA). The results showed that the average bond length and isotope fractionation factor are consistent with those published in previous studies, and the relative volume changes are considerably lower than the results calculated using the periodic boundary method. Specifically, the average Si–O bond length of quartz was 1.63 Å, and the relative volume change of quartz centered on silicon atoms was  − 0.39%. The average Zn–O bond length in the Zn–Al-layered double hydroxide was 2.10 Å, with a relative volume change of 1.96%. Cadmium-containing calcite had an average Cd–O bond length of 2.28 Å, with a relative volume change of 0.45%. At 298 K, the equilibrium fractionation factors between quartz, Zn–Al-layered double hydroxide, cadmium-containing calcite, and their corresponding aqueous solutions were <span>(Delta ^{30/28} {text{Si}}_{{{text{Qtz-H}}_{4} {text{SiO}}_{4} }} = 2.20{permil} )</span>, <span>(Delta^{18/16} {text{O}}_{ {text{Qtz}}{-} ( {text{H}}_{2} {text{O}} )_{text{n}}} = 36.05{permil})</span>, <span>(Delta^{66/64} {text{Zn}}_{ {text{Zn}} {-} {text{Al LDH-Zn}} ( {text{H}}_{2} {text{O}} )_{text{n}}^{2+}} = 1.12{permil})</span> and <span>(Delta^{114/110} {text{Cd}}_{ {text{(Cd--Cal)-Cd}} ( {text{H}}_{2} {text{O}} )_ {text{n}}^{2 +} } = - 0.26{permil})</span> respectively. These results strongly support the reliability of the improved VVCM method for geometric optimization of molecular clusters.</p></div>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"23 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geochemicaltransactions.biomedcentral.com/counter/pdf/10.1186/s12932-022-00078-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4868609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A density functional theory study of Fe(II)/Fe(III) distribution in single layer green rust: a cluster approach 单层绿锈中Fe(II)/Fe(III)分布的密度泛函理论研究:集群方法
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2021-06-11 DOI: 10.1186/s12932-021-00076-0
Weichao Sun, Dominique J. Tobler, Martin P. Andersson
{"title":"A density functional theory study of Fe(II)/Fe(III) distribution in single layer green rust: a cluster approach","authors":"Weichao Sun,&nbsp;Dominique J. Tobler,&nbsp;Martin P. Andersson","doi":"10.1186/s12932-021-00076-0","DOIUrl":"https://doi.org/10.1186/s12932-021-00076-0","url":null,"abstract":"<p>Green rust (GR) is a potentially important compound for the reduction of heavy metal and organic pollutants in subsurface environment because of its high Fe(II) content, but many details of the actual reaction mechanism are lacking. The reductive capacity distribution within GR is a key to understand how and where the redox reaction occurs and computational chemistry can provide more details about the electronic properties of green rust. We constructed three sizes of cluster models of single layer GR (i.e., without interlayer molecules or ions) and calculated the charge distribution of these structures using density functional theory. We found that the Fe(II) and Fe(III) are distributed unevenly in the single layer GR. Within a certain range of Fe(II)/Fe(III) ratios, the outer iron atoms behave more like Fe(III) and the inner iron atoms behave more like Fe(II). These findings indicate that the interior of GR is more reductive than the outer parts and will provide new information to understand the GR redox interactions.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-021-00076-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4462605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Influences on tidal channel and aquaculture shrimp pond water chemical composition in Southwest Bangladesh 孟加拉西南部潮汐通道及养殖虾池水化学成分的影响
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2021-05-28 DOI: 10.1186/s12932-021-00074-2
Matthew Dietrich, John C. Ayers
{"title":"Influences on tidal channel and aquaculture shrimp pond water chemical composition in Southwest Bangladesh","authors":"Matthew Dietrich,&nbsp;John C. Ayers","doi":"10.1186/s12932-021-00074-2","DOIUrl":"https://doi.org/10.1186/s12932-021-00074-2","url":null,"abstract":"<p>Detailed geochemical studies of both major and minor elements in Bangladesh surface waters are sparse, particularly in shrimp aquaculture pond environments. Therefore, water samples from shrimp aquaculture ponds and tidal channels were collected in high precipitation (July) and low precipitation (May) months from 2018–2019 in Southwest Bangladesh and analyzed for complete water chemistry. Selenium (Se) and arsenic (As) were elevated above WHO guidelines in 50% and?~?87% of samples, respectively, but do not show any recognizable spatial patterns. Shrimp pond and tidal channel water compositions in the dry season (May) are similar, illustrating their connectivity and minimal endogenous effects within shrimp ponds. Tidal channels are less saline in July than shrimp ponds still irrigated by tidal channels, suggesting that either farmers limit irrigation to continue farming saltwater shrimp, or the irrigation flux is low and leads to a lag in aquaculture-tidal channel compositional homogenization. δ<sup>18</sup>O and δ<sup>2</sup>H isotopic compositions from samples in May of 2019 reveal tidal channel samples are closer to the local meteoric water line (LMWL) than shrimp pond samples, because of less evaporation. However, evaporation in May shrimp ponds has a minimal effect on water composition, likely because of regular drainage/exchange of pond waters. Dissolved organic carbon (DOC) is positively correlated with both δ<sup>18</sup>O and δ<sup>2</sup>H in shrimp ponds, suggesting that as evaporation increases, DOC becomes enriched. Multiple linear regression reveals that As and Se can be moderately predicted (adjusted R<sup>2</sup> values between 0.4 and 0.7, p?&lt;?0.01) in surface waters of our study with only 3–4 independent predictor variables (e.g., Ni, V and DOC for Se prediction; Cu, V, Ni and P for As prediction). Thus, this general approach should be followed in other regions throughout the world when measurements for certain hazardous trace elements such as Se and As may be lacking in several samples from a dataset.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-021-00074-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5092654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Dissolution and solubility of calcite-rhodochrosite solid solutions [(Ca1-xMnx)CO3] at 25 °C 方解石-菱锰矿固溶体[(Ca1-xMnx)CO3]在25℃下的溶解和溶解度
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2021-05-26 DOI: 10.1186/s12932-021-00075-1
Yinian Zhu, Peijie Nong, Nan Mo, Zongqiang Zhu, Huan Deng, Shen Tang, Hongqu Yang, Lihao Zhang, Xingxing Wang
{"title":"Dissolution and solubility of calcite-rhodochrosite solid solutions [(Ca1-xMnx)CO3] at 25 °C","authors":"Yinian Zhu,&nbsp;Peijie Nong,&nbsp;Nan Mo,&nbsp;Zongqiang Zhu,&nbsp;Huan Deng,&nbsp;Shen Tang,&nbsp;Hongqu Yang,&nbsp;Lihao Zhang,&nbsp;Xingxing Wang","doi":"10.1186/s12932-021-00075-1","DOIUrl":"https://doi.org/10.1186/s12932-021-00075-1","url":null,"abstract":"<p>A complete series of calcite-rhodochrosite solid solutions [(Ca<sub>1-x</sub>Mn<sub>x</sub>)CO<sub>3</sub>] are prepared, and their dissolution processes in various water samples are experimentally investigated. The crystal morphologies of the solid solutions vary from blocky spherical crystal aggregates to smaller spheres with an increasing incorporation of Mn in the solids. Regarding dissolution in N<sub>2</sub>-degassed water, air-saturated water and CO<sub>2</sub>-saturated water at 25?°C, the aqueous Ca and Mn concentrations reach their highest values after 1240–2400?h, 6–12?h and?&lt;?1?h, respectively, and then decrease gradually to a steady state; additionally, the ion activity products (log_IAP) at the final steady state (≈ solubility products in log_<i>K</i><sub>sp</sub>) are estimated to be ??8.46?±?0.06, ??8.44?±?0.10 and ??8.59?±?0.10 for calcite [CaCO<sub>3</sub>], respectively, and ??10.25?±?0.08, ??10.26?±?0.10 and ??10.28?±?0.03, for rhodochrosite [MnCO<sub>3</sub>], respectively. As X<sub>Mn</sub> increases, the log_IAP values decrease from ??8.44?~???8.59 for calcite to ??10.25?~???10.28 for rhodochrosite. The aqueous Mn concentrations increase with an increasing Mn/(Ca?+?Mn) molar ratio (X<sub>Mn</sub>) of the (Ca<sub>1-x</sub>Mn<sub>x</sub>)CO<sub>3</sub> solid solutions, while the aqueous Ca concentrations show the highest values at X<sub>Mn</sub>?=?0.53–0.63. In the constructed Lippmann diagram of subregular (Ca<sub>1-x</sub>Mn<sub>x</sub>)CO<sub>3</sub> solid solutions, the solids dissolve incongruently, and the data points of the aqueous solutions move progressively up to the Lippmann <i>solutus</i> curve and then along the <i>solutus</i> curve or saturation curve of pure MnCO<sub>3</sub> to the Mn-poor side. The microcrystalline cores of the spherical crystal aggregates are preferentially dissolved to form core hollows while simultaneously precipitating Mn-rich hexagonal prisms.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-021-00075-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5019604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts 焦绿石、微石、铁长石和硅酸盐熔体中微量元素的分配
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2020-08-24 DOI: 10.1186/s12932-020-00072-w
Stephan Klemme, Jasper Berndt
{"title":"Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts","authors":"Stephan Klemme,&nbsp;Jasper Berndt","doi":"10.1186/s12932-020-00072-w","DOIUrl":"https://doi.org/10.1186/s12932-020-00072-w","url":null,"abstract":"<p>We present experimentally determined trace element partition coefficients (D) between pyrochlore-group minerals (Ca<sub>2</sub>(Nb,Ta)<sub>2</sub>O<sub>6</sub>(O,F)), Ca fersmite (CaNb<sub>2</sub>O<sub>6</sub>), and silicate melts. Our data indicate that pyrochlores and fersmite are able to strongly fractionate trace elements during the evolution of SiO<sub>2</sub>-undersaturated magmas. Pyrochlore efficiently fractionates Zr and Hf from Nb and Ta, with D<sub>Zr</sub> and D<sub>Hf</sub> below or equal to unity, and D<sub>Nb</sub> and D<sub>Ta</sub> significantly above unity. We find that D<sub>Ta</sub> pyrochlore-group mineral/silicate melt is always higher than D<sub>Nb</sub>, which agrees with the HFSE partitioning of?all other Ti–rich minerals such as perovskite, rutile, ilmenite or Fe-Ti spinel. Our experimental partition coefficients also show that, under oxidizing conditions, D<sub>Th</sub> is higher than corresponding D<sub>U</sub> and this implies that pyrochlore-group minerals may fractionate U and Th in silicate magmas. The rare earth element (REE) partition coefficients are around unity, only the light REE are compatible in pyrochlore-group minerals, which explains the high?rare earth element concentrations in naturally occurring magmatic pyrochlores.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00072-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4923129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Immobilization of Cr(VI) by sulphate green rust and sulphidized nanoscale zerovalent iron in sand media: batch and column studies 硫酸盐绿锈和硫化纳米级零价铁在砂介质中的固定化Cr(VI):批和柱研究
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2020-08-14 DOI: 10.1186/s12932-020-00073-9
Flavia Digiacomo, Dominique J. Tobler, Thomas Held, Thomas Neumann
{"title":"Immobilization of Cr(VI) by sulphate green rust and sulphidized nanoscale zerovalent iron in sand media: batch and column studies","authors":"Flavia Digiacomo,&nbsp;Dominique J. Tobler,&nbsp;Thomas Held,&nbsp;Thomas Neumann","doi":"10.1186/s12932-020-00073-9","DOIUrl":"https://doi.org/10.1186/s12932-020-00073-9","url":null,"abstract":"<p>Chromate, Cr(VI), contamination in soil and groundwater poses serious threat to living organisms and environmental health worldwide. Sulphate green rust (GR<sub>SO4</sub>), a naturally occurring mixed-valent iron layered double hydroxide has shown to be highly effective in the reduction of Cr(VI) to poorly soluble Cr(III), giving promise for its use as reactant for in situ remedial applications. However, little is known about its immobilization efficiency inside porous geological media, such as soils and sediments, where this reactant would ultimately be applied. In this study, we tested the removal of Cr(VI) by GR<sub>SO4</sub> in quartz sand fixed-bed column systems (diameter?×?length?=?1.4?cm?×?11?cm), under anoxic conditions. Cr(VI) removal efficiency (relative to the available reducing equivalents in the added GR<sub>SO4</sub>) was determined by evaluating breakthrough curves performed at different inlet Cr(VI) concentrations (0.125–1?mM) which are representative of Cr(VI) concentrations found at contaminated sites, different flow rates (0.25–3?ml/min) and solution pH (4.5, 7 and 9.5). Results showed that (i) increasing Cr(VI) inlet concentration substantially decreased Cr(VI) removal efficiency of GR<sub>SO4</sub>, (ii) flow rates had a lower impact on removal efficiencies, although values tended to be lower at higher flow rates, and (iii) Cr(VI) removal was enhanced at acidic pH conditions compared to neutral and alkaline conditions. For comparison, Cr(VI) removal by sulphidized nanoscale zerovalent iron (S-nZVI) in identical column experiments was substantially lower, indicating that S-nZVI reactivity with Cr(VI) is much slower compared to GR<sub>SO4</sub>. Overall, GR<sub>SO4</sub> performed reasonably well, even at the highest tested flow rate, showing its versatility and suitability for Cr(VI) remediation applications in high flow environments.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00073-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4563608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Correction to: Constraining the carbonate system in soils via testing the internal consistency of pH, pCO2 and alkalinity measurements 修正:通过测试pH值、二氧化碳分压和碱度测量的内部一致性来限制土壤中的碳酸盐系统
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2020-04-22 DOI: 10.1186/s12932-020-00071-x
Sima Bargrizan, Ronald J. Smernik, Luke M. Mosley
{"title":"Correction to: Constraining the carbonate system in soils via testing the internal consistency of pH, pCO2 and alkalinity measurements","authors":"Sima Bargrizan,&nbsp;Ronald J. Smernik,&nbsp;Luke M. Mosley","doi":"10.1186/s12932-020-00071-x","DOIUrl":"https://doi.org/10.1186/s12932-020-00071-x","url":null,"abstract":"","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00071-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4844648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers and advances in environmental soil chemistry: a special issue in honor of Prof. Donald L. Sparks 环境土壤化学的前沿与进展:纪念唐纳德·l·斯帕克斯教授的特刊
IF 2.3 4区 地球科学
Geochemical Transactions Pub Date : 2020-04-17 DOI: 10.1186/s12932-020-00070-y
Young-Shin Jun, Mengqiang Zhu, Derek Peak
{"title":"Frontiers and advances in environmental soil chemistry: a special issue in honor of Prof. Donald L. Sparks","authors":"Young-Shin Jun,&nbsp;Mengqiang Zhu,&nbsp;Derek Peak","doi":"10.1186/s12932-020-00070-y","DOIUrl":"https://doi.org/10.1186/s12932-020-00070-y","url":null,"abstract":"","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00070-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4669083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信