Genome researchPub Date : 2024-11-22DOI: 10.1101/gr.279430.124
Bertille Montibus, James A. Cain, Rocio T. Martinez-Nunez, Rebecca J. Oakey
{"title":"Global identification of mammalian host and nested gene pairs reveal tissue-specific transcriptional interplay","authors":"Bertille Montibus, James A. Cain, Rocio T. Martinez-Nunez, Rebecca J. Oakey","doi":"10.1101/gr.279430.124","DOIUrl":"https://doi.org/10.1101/gr.279430.124","url":null,"abstract":"Nucleotide sequences along a gene provide instructions to transcriptional and cotranscriptional machinery allowing genome expansion into the transcriptome. Nucleotide sequence can often be shared between two genes and in some occurrences, a gene is located completely within a different gene; these are known as host/nested gene pairs. In these instances, if both genes are transcribed, overlap can result in a transcriptional crosstalk where genes regulate each other. Despite this, a comprehensive annotation of where such genes are located and their expression patterns is lacking. To address this, we provide an up-to-date catalog of host/nested gene pairs in mouse and human, showing that over a tenth of all genes contain a nested gene. We discovered that transcriptional co-occurrence is often tissue specific. This coexpression was especially prevalent within the transcriptionally permissive tissue, testis. We use this developmental system and scRNA-seq analysis to demonstrate that the coexpression of pairs can occur in single cells and transcription in the same place at the same time can enhance the transcript diversity of the host gene. In agreement, host genes are more transcript-diverse than the rest of the transcriptome. Host/nested gene configurations are common in both human and mouse, suggesting that interplay between gene pairs is a feature of the mammalian genome. This highlights the relevance of transcriptional crosstalk between genes which share nucleic acid sequence. The results and analysis are available on an Rshiny application (https://hngeneviewer.sites.er.kcl.ac.uk/hn_viewer/).","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"34 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-22DOI: 10.1101/gr.278930.124
Matthew D. Pollard, Wynn K. Meyer, Emily E. Puckett
{"title":"Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets","authors":"Matthew D. Pollard, Wynn K. Meyer, Emily E. Puckett","doi":"10.1101/gr.278930.124","DOIUrl":"https://doi.org/10.1101/gr.278930.124","url":null,"abstract":"Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score—indicative of the amount of animal protein in the diet—for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes—<em>ACADSB</em>, <em>CLDN16</em>, <em>CPB1</em>, <em>PNLIP</em>, <em>SLC13A2</em>, and <em>SLC14A2</em>—that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"5 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-21DOI: 10.1101/gr.279621.124
Samuel H Kim, Georgi K. Marinov, William Greenleaf
{"title":"KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome","authors":"Samuel H Kim, Georgi K. Marinov, William Greenleaf","doi":"10.1101/gr.279621.124","DOIUrl":"https://doi.org/10.1101/gr.279621.124","url":null,"abstract":"Gene regulation in most eukaryotes involves two fundamental physical processes -- alterations in the packaging of the genome by nucleosomes, with active <em>cis</em>-regulatory elements (CREs) generally characterized by an open-chromatin configuration, and the activation of transcription. Mapping these physical properties and biochemical activities genome-wide -- through profiling chromatin accessibility and active transcription -- are key tools used to understand the logic and mechanisms of transcription and its regulation. However, the relationship between these two states has until now not been accessible to simultaneous measurement. To address this, we developed KAS-ATAC, a combination of the KAS-seq (Kethoxal-Assisted SsDNA sequencing and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) methods for mapping single-stranded DNA (and thus active transcription) and chromatin accessibility, respectively, enabling the genome-wide identification of DNA fragments that are simultaneously accessible and contain ssDNA. We use KAS-ATAC to evaluate levels of active transcription over different classes of regulatory elements in the human genome, to estimate the absolute levels of transcribed accessible DNA over CREs, to map the nucleosomal configurations associated with RNA polymerase activities, and to assess transcription factor association with transcribed DNA through transcription factor binding site (TFBS) footprinting. We observe lower levels of transcription over distal enhancers compared to promoters and distinct nucleosomal configurations around transcription initiation sites associated with active transcription. Most TFs associate equally with transcribed and nontranscribed DNA but a few factors specifically do not exhibit footprints over ssDNA-containing fragments. We anticipate KAS-ATAC to continue to derive useful insights into chromatin organization and transcriptional regulation in other contexts in the future.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"27 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-21DOI: 10.1101/gr.279418.124
Georgi K. Marinov, Benjamin Doughty, Anshul Kundaje, William J Greenleaf
{"title":"The chromatin landscape of the histone-possessing Bacteriovorax bacteria","authors":"Georgi K. Marinov, Benjamin Doughty, Anshul Kundaje, William J Greenleaf","doi":"10.1101/gr.279418.124","DOIUrl":"https://doi.org/10.1101/gr.279418.124","url":null,"abstract":"Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a <em>Bacteriovorax</em> strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, <em>Bacteriovorax</em> chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in <em>Bacteriovorax</em> positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, <em>Bacteriovorax</em> promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the <em>Bacteriovorax</em> genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"61 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-21DOI: 10.1101/gr.278944.124
Xiaoli Zhang, Yirui Huang, Yajing Yang, Qi-En Wang, Lang Li
{"title":"Advancements in prospective single-cell lineage barcoding and their applications in research","authors":"Xiaoli Zhang, Yirui Huang, Yajing Yang, Qi-En Wang, Lang Li","doi":"10.1101/gr.278944.124","DOIUrl":"https://doi.org/10.1101/gr.278944.124","url":null,"abstract":"Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research. Additionally, the review navigates through critical considerations for successful experimental design in lineage tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, contributing to the ongoing advancement of scLT studies.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"16 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-20DOI: 10.1101/gr.279405.124
Kathleen Zeglinski, Christian Montellese, Matthew E Ritchie, Monther Alhamdoosh, Cédric Vonarburg, Rory Bowden, Monika Jordi, Quentin Gouil, Florian Aeschimann, Arthur Hsu
{"title":"An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing.","authors":"Kathleen Zeglinski, Christian Montellese, Matthew E Ritchie, Monther Alhamdoosh, Cédric Vonarburg, Rory Bowden, Monika Jordi, Quentin Gouil, Florian Aeschimann, Arthur Hsu","doi":"10.1101/gr.279405.124","DOIUrl":"10.1101/gr.279405.124","url":null,"abstract":"<p><p>Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":"1966-1975"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-20DOI: 10.1101/gr.279012.124
Xudong Liu, Ying Ni, Lianwei Ye, Zhihao Guo, Lu Tan, Jun Li, Mengsu Yang, Sheng Chen, Runsheng Li
{"title":"Nanopore strand-specific mismatch enables de novo detection of bacterial DNA modifications.","authors":"Xudong Liu, Ying Ni, Lianwei Ye, Zhihao Guo, Lu Tan, Jun Li, Mengsu Yang, Sheng Chen, Runsheng Li","doi":"10.1101/gr.279012.124","DOIUrl":"10.1101/gr.279012.124","url":null,"abstract":"<p><p>DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assemblies, and functional analysis for DNA modifications.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":"2025-2038"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-20DOI: 10.1101/gr.279168.124
Shruti V Iyer, Sara Goodwin, William Richard McCombie
{"title":"Leveraging the power of long reads for targeted sequencing.","authors":"Shruti V Iyer, Sara Goodwin, William Richard McCombie","doi":"10.1101/gr.279168.124","DOIUrl":"10.1101/gr.279168.124","url":null,"abstract":"<p><p>Long-read sequencing technologies have improved the contiguity and, as a result, the quality of genome assemblies by generating reads long enough to span and resolve complex or repetitive regions of the genome. Several groups have shown the power of long reads in detecting thousands of genomic and epigenomic features that were previously missed by short-read sequencing approaches. While these studies demonstrate how long reads can help resolve repetitive and complex regions of the genome, they also highlight the throughput and coverage requirements needed to accurately resolve variant alleles across large populations using these platforms. At the time of this review, whole-genome long-read sequencing is more expensive than short-read sequencing on the highest throughput short-read instruments; thus, achieving sufficient coverage to detect low-frequency variants (such as somatic variation) in heterogenous samples remains challenging. Targeted sequencing, on the other hand, provides the depth necessary to detect these low-frequency variants in heterogeneous populations. Here, we review currently used and recently developed targeted sequencing strategies that leverage existing long-read technologies to increase the resolution with which we can look at nucleic acids in a variety of biological contexts.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"34 11","pages":"1701-1718"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-20DOI: 10.1101/gr.279273.124
Jonas A Gustafson, Sophia B Gibson, Nikhita Damaraju, Miranda P G Zalusky, Kendra Hoekzema, David Twesigomwe, Lei Yang, Anthony A Snead, Phillip A Richmond, Wouter De Coster, Nathan D Olson, Andrea Guarracino, Qiuhui Li, Angela L Miller, Joy Goffena, Zachary B Anderson, Sophie H R Storz, Sydney A Ward, Maisha Sinha, Claudia Gonzaga-Jauregui, Wayne E Clarke, Anna O Basile, André Corvelo, Catherine Reeves, Adrienne Helland, Rajeeva Lochan Musunuri, Mahler Revsine, Karynne E Patterson, Cate R Paschal, Christina Zakarian, Sara Goodwin, Tanner D Jensen, Esther Robb, William Richard McCombie, Fritz J Sedlazeck, Justin M Zook, Stephen B Montgomery, Erik Garrison, Mikhail Kolmogorov, Michael C Schatz, Richard N McLaughlin, Harriet Dashnow, Michael C Zody, Matt Loose, Miten Jain, Evan E Eichler, Danny E Miller
{"title":"High-coverage nanopore sequencing of samples from the 1000 Genomes Project to build a comprehensive catalog of human genetic variation.","authors":"Jonas A Gustafson, Sophia B Gibson, Nikhita Damaraju, Miranda P G Zalusky, Kendra Hoekzema, David Twesigomwe, Lei Yang, Anthony A Snead, Phillip A Richmond, Wouter De Coster, Nathan D Olson, Andrea Guarracino, Qiuhui Li, Angela L Miller, Joy Goffena, Zachary B Anderson, Sophie H R Storz, Sydney A Ward, Maisha Sinha, Claudia Gonzaga-Jauregui, Wayne E Clarke, Anna O Basile, André Corvelo, Catherine Reeves, Adrienne Helland, Rajeeva Lochan Musunuri, Mahler Revsine, Karynne E Patterson, Cate R Paschal, Christina Zakarian, Sara Goodwin, Tanner D Jensen, Esther Robb, William Richard McCombie, Fritz J Sedlazeck, Justin M Zook, Stephen B Montgomery, Erik Garrison, Mikhail Kolmogorov, Michael C Schatz, Richard N McLaughlin, Harriet Dashnow, Michael C Zody, Matt Loose, Miten Jain, Evan E Eichler, Danny E Miller","doi":"10.1101/gr.279273.124","DOIUrl":"10.1101/gr.279273.124","url":null,"abstract":"<p><p>Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":"2061-2073"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome researchPub Date : 2024-11-20DOI: 10.1101/gr.279355.124
Angela Gomez-Simmonds, Medini K Annavajhala, Dwayne Seeram, Todd W Hokunson, Heekuk Park, Anne-Catrin Uhlemann
{"title":"Genomic epidemiology of carbapenem-resistant Enterobacterales at a New York City hospital over a 10-year period reveals complex plasmid-clone dynamics and evidence for frequent horizontal transfer of <i>bla</i> <sub>KPC</sub>.","authors":"Angela Gomez-Simmonds, Medini K Annavajhala, Dwayne Seeram, Todd W Hokunson, Heekuk Park, Anne-Catrin Uhlemann","doi":"10.1101/gr.279355.124","DOIUrl":"10.1101/gr.279355.124","url":null,"abstract":"<p><p>Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of <i>bla</i> <sub>KPC</sub> (the <i>Klebsiella pneumoniae</i> carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 <i>bla</i> <sub>KPC</sub>-positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized <i>bla</i> <sub>KPC</sub>-harboring plasmids. Phylogenetic analysis and Mash clustering were used to define putative clonal and plasmid transmission clusters, respectively. Overall, CRE isolates belonged to 96 multilocus sequence types (STs) encoding <i>bla</i> <sub>KPC</sub> on 447 plasmids which formed 54 plasmid clusters. We found evidence for clonal transmission in 66% of CRE isolates, over half of which belonged to four clades comprising <i>K. pneumoniae</i> ST258. Plasmid-mediated acquisition of <i>bla</i> <sub>KPC</sub> occurred in 23%-27% of isolates. While most plasmid clusters were small, several plasmids were identified in multiple different species and STs, including a highly promiscuous IncN plasmid and an IncF plasmid putatively spreading <i>bla</i> <sub>KPC</sub> from ST258 to other clones. Overall, this points to both the continued dominance of <i>K. pneumoniae</i> ST258 and the dissemination of <i>bla</i> <sub>KPC</sub> across clones and species by diverse plasmid backbones. These findings support integrating long-read sequencing into genomic surveillance approaches to detect the hitherto silent spread of carbapenem resistance driven by mobile plasmids.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":"1895-1907"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}