Genome research最新文献

筛选
英文 中文
Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs 多基因纯合子编辑加速异种移植猪的产生
IF 7 2区 生物学
Genome research Pub Date : 2025-03-05 DOI: 10.1101/gr.279709.124
Xiaoyue Duan, Chaolei Chen, Chang Du, Liang Guo, Jun Liu, Naipeng Hou, Pan Li, Xiaolan Qi, Fei Gao, Xuguang Du, Jiangping Song, Sen Wu
{"title":"Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs","authors":"Xiaoyue Duan, Chaolei Chen, Chang Du, Liang Guo, Jun Liu, Naipeng Hou, Pan Li, Xiaolan Qi, Fei Gao, Xuguang Du, Jiangping Song, Sen Wu","doi":"10.1101/gr.279709.124","DOIUrl":"https://doi.org/10.1101/gr.279709.124","url":null,"abstract":"Although CRISPR-Cas based genome editing has made significant strides over the past decade, achieving simultaneous homozygous gene editing of multiple targets in primary cells remains a significant challenge. In this study, we optimized a coselection strategy to enhance homozygous gene editing rates in the genomes of primary porcine fetal fibroblasts (PFFs). The strategy utilizes the expression of a surrogate reporter (eGFP) to select for cells with the highest reporter expression, thereby improving editing efficiency. When applied to simultaneous multigene editing, we targeted the most challenging site for selection, while other target sites did not require selection. Using this approach, we successfully obtained single-cell PFF clones (3/10) with seven or more homozygously edited genes, including <em>GGTA1</em>, <em>CMAH</em>, <em>B4GALNT2</em>, <em>CD46</em>, <em>CD47</em>, <em>THBD</em>, and <em>GHR</em>. Importantly, cells edited using this strategy were efficiently used for somatic cell nuclear transfer (SCNT) to generate healthy xenotransplantation pigs in less than five months, a process that previously required years of breeding or multiple rounds of SCNT.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"2 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the male-specific region on the guppy Y Chromosome from a haplotype-resolved assembly 从单倍型分离组合中鉴定孔雀鱼Y染色体上的雄性特异性区域
IF 7 2区 生物学
Genome research Pub Date : 2025-03-05 DOI: 10.1101/gr.279582.124
Kang Du, Oliver Deusch, Ilja Bezrukov, Christa Lanz, Yann Guiguen, Margarete Hoffmann, Anette Habring, Detlef Weigel, Manfred Schartl, Christine Dreyer
{"title":"Identification of the male-specific region on the guppy Y Chromosome from a haplotype-resolved assembly","authors":"Kang Du, Oliver Deusch, Ilja Bezrukov, Christa Lanz, Yann Guiguen, Margarete Hoffmann, Anette Habring, Detlef Weigel, Manfred Schartl, Christine Dreyer","doi":"10.1101/gr.279582.124","DOIUrl":"https://doi.org/10.1101/gr.279582.124","url":null,"abstract":"The guppy Y Chromosome has been a paradigmatic model for studying the genetics of sex-linked traits and Y Chromosome–driven evolution for more than a century. Despite strong efforts, knowledge on genomic organization and molecular differentiation of the sex chromosome pair remains unsatisfactory and partly contradictory with respect to regions of reduced recombination. Especially the border between pseudoautosomal and male-specific regions of the Y has not been defined so far. To circumvent the problems in assigning the repeat-rich differentiated hemizygous or heterozygous sequences of the sex chromosome pair, we sequenced a YY male generated by a cross of a sex-reversed Maculatus strain XY female to a normal XY male from the inbred Guanapo population. High-molecular-weight genomic DNA from the YY male was sequenced on the Pacific Biosciences platform, and both Y haplotypes were reconstructed by Trio binning. By mapping of male specific SNPs and RADseq sequences, we identify a single male specific-region of ∼5 Mb length at the distal end of the Y (MSY). Sequence divergence between X and Y in the segment is on average five times higher than in the proximal part in agreement with reduced recombination. The MSY is enriched for repeats and transposons but does not differ in the content of coding genes from the X, indicating that genic degeneration has not progressed to a measurable degree.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"2 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertebrates show coordinated elevated expression of mitochondrial and nuclear genes after birth 脊椎动物在出生后显示出线粒体和核基因的协调表达
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.279700.124
Hadar Medini, Dan Mishmar
{"title":"Vertebrates show coordinated elevated expression of mitochondrial and nuclear genes after birth","authors":"Hadar Medini, Dan Mishmar","doi":"10.1101/gr.279700.124","DOIUrl":"https://doi.org/10.1101/gr.279700.124","url":null,"abstract":"Interactions between mitochondrial and nuclear factors are essential to life. Nevertheless, the importance of coordinated regulation of mitochondrial–nuclear gene expression (CMNGE) to changing physiological conditions is poorly understood and is limited to certain tissues and organisms. We hypothesized that CMNGE is important for development across vertebrates and, hence, should be conserved. As a first step, we analyzed more than 1400 RNA-seq experiments performed during prenatal development, in neonates, and in adults across vertebrate evolution. We find conserved sharp elevation of CMNGE after birth, including oxidative phosphorylation (OXPHOS) and mitochondrial ribosome genes, in the heart, hindbrain, forebrain, and kidney across mammals, as well as in <em>Gallus gallus</em> and in the lizard <em>Anolis carolinensis</em>. This is accompanied by elevated expression of TCA cycle enzymes and reduction in hypoxia response genes, suggesting a conserved cross-tissue metabolic switch after birth/hatching. Analysis of about 70 known regulators of mitochondrial gene expression reveals consistently elevated expression of <em>PPARGC1A</em> (PGC1 alpha) and <em>CEBPB</em> after birth/hatching across organisms and tissues, thus highlighting them as candidate regulators of CMNGE upon transition to the neonate. Analyses of <em>Danio rerio</em>, <em>Xenopus tropicalis, Caenorhabditis elegans</em>, and <em>Drosophila melanogaster</em> reveal elevated CMNGE prior to hatching in <em>X. tropicalis</em> and in <em>D. melanogaster</em>, which is associated with the emergence of muscle activity. Lack of such an ancient pattern in mammals and in chickens suggests that it was lost during radiation of terrestrial vertebrates. Taken together, our results suggest that regulated CMNGE after birth reflects an essential metabolic switch that is under strong selective constraints.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"16 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atypical epigenetic and small RNA control of degenerated transposons and their fragments in clonally reproducing Spirodela polyrhiza 多根螺旋体无性系繁殖中变性转座子及其片段的非典型表观遗传和小RNA控制
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.279532.124
Rodolphe Dombey, Daniel Buendía-Ávila, Verónica Barragán-Borrero, Laura Diezma-Navas, Arturo Ponce-Mañe, José Mario Vargas-Guerrero, Rana Elias, Arturo Marí-Ordóñez
{"title":"Atypical epigenetic and small RNA control of degenerated transposons and their fragments in clonally reproducing Spirodela polyrhiza","authors":"Rodolphe Dombey, Daniel Buendía-Ávila, Verónica Barragán-Borrero, Laura Diezma-Navas, Arturo Ponce-Mañe, José Mario Vargas-Guerrero, Rana Elias, Arturo Marí-Ordóñez","doi":"10.1101/gr.279532.124","DOIUrl":"https://doi.org/10.1101/gr.279532.124","url":null,"abstract":"A handful of model plants have provided insight into silencing of transposable elements (TEs) through RNA-directed DNA methylation (RdDM). Guided by 24 nt long small-interfering RNAs (siRNAs), this epigenetic regulation installs DNA methylation and histone modifications like H3K9me2, which can be subsequently maintained independently of siRNAs. However, the genome of the clonally propagating duckweed <em>Spirodela polyrhiza</em> (<em>Lemnaceae</em>) has low levels of DNA methylation, very low expression of RdDM components, and near absence of 24 nt siRNAs. Moreover, some genes encoding RdDM factors, DNA methylation maintenance, and RNA silencing mechanisms are missing from the genome. Here, we investigated the distribution of TEs and their epigenetic marks in the <em>Spirodela</em> genome. Although abundant degenerated TEs have largely lost DNA methylation and H3K9me2 is low, they remain marked by the heterochromatin-associated H3K9me1 and H3K27me1 modifications. In contrast, we find high levels of DNA methylation and H3K9me2 in the relatively few intact TEs, which are source of 24 nt siRNAs, like RdDM-controlled TEs in other angiosperms. The data suggest that, potentially as adaptation to vegetative propagation, RdDM extent, silencing components, and targets are different from other angiosperms, preferentially focused on potentially intact TEs. It also provides evidence for heterochromatin maintenance independently of DNA methylation in flowering plants. These discoveries highlight the diversity of silencing mechanisms that exist in plants and the importance of using disparate model species to discover these mechanisms.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"822 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the largest disease-associated transcript isoforms in the human neural retina with advanced long-read sequencing approaches 用先进的长读测序方法破译人类神经视网膜中最大的疾病相关转录异构体
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.280060.124
Merel Stemerdink, Tabea Riepe, Nick Zomer, Renee Salz, Michael Kwint, Jaap Oostrik, Raoul Timmermans, Barbara Ferrari, Stefano Ferrari, Alfredo Duenas Rey, Emma Delanote, Suzanne E de Bruijn, Hannie Kremer, Susanne Roosing, Frauke Coppieters, Alexander Hoischen, Frans P.M. Cremers, Peter-Bram A.C. 't Hoen, Erwin van Wijk, Erik de Vrieze
{"title":"Deciphering the largest disease-associated transcript isoforms in the human neural retina with advanced long-read sequencing approaches","authors":"Merel Stemerdink, Tabea Riepe, Nick Zomer, Renee Salz, Michael Kwint, Jaap Oostrik, Raoul Timmermans, Barbara Ferrari, Stefano Ferrari, Alfredo Duenas Rey, Emma Delanote, Suzanne E de Bruijn, Hannie Kremer, Susanne Roosing, Frauke Coppieters, Alexander Hoischen, Frans P.M. Cremers, Peter-Bram A.C. 't Hoen, Erwin van Wijk, Erik de Vrieze","doi":"10.1101/gr.280060.124","DOIUrl":"https://doi.org/10.1101/gr.280060.124","url":null,"abstract":"Sequencing technologies have long limited the comprehensive investigation of large transcripts associated with inherited retinal diseases (IRDs) like Usher syndrome, which involves 11 associated genes with transcripts up to 19.6 kb. To address this, we used PacBio long-read mRNA isoform sequencing (Iso-Seq) following standard library preparation and an optimized workflow to enrich for long transcripts in the human neural retina. While our workflow achieved sequencing of transcripts up to 15 kb, this was insufficient for Usher syndrome-associated genes <em>USH2A</em> and <em>ADGRV1</em>, with transcripts of 18.9 kb and 19.6 kb, respectively. To overcome this, we employed the Samplix Xdrop System for indirect target enrichment of cDNA, a technique typically used for genomic DNA capture. This method facilitated the successful capture and sequencing of <em>ADGRV1</em> transcripts as well as full-length 18.9 kb <em>USH2A</em> transcripts. By combining algorithmic analysis with detailed manual curation of sequenced reads, we identified novel isoforms characterized by an alternative 5' transcription start site, the inclusion of previously unannotated exons or alternative splicing events across the 11 Usher syndrome-associated genes. These findings have significant implications for genetic diagnostics and therapeutic development. The analysis applied here on Usher syndrome-associated transcripts exemplifies a valuable approach that can be extended to explore the transcriptomic complexity of other IRD-associated genes in the complete transcriptome dataset generated within this study. Additionally, we demonstrated the adaptability of the Samplix Xdrop system for capturing cDNA, and the optimized methodologies described can be expanded to facilitate the enrichment of large transcripts from various tissues of interest.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"2 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing nanopore adaptive sampling for pneumococcal serotype surveillance in complex samples using the graph-based GNASTy algorithm 使用基于图的GNASTy算法优化复杂样本中肺炎球菌血清型监测的纳米孔自适应采样
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.279435.124
Samuel T. Horsfield, Basil C.T. Fok, Yuhan Fu, Paul Turner, John A. Lees, Nicholas J. Croucher
{"title":"Optimizing nanopore adaptive sampling for pneumococcal serotype surveillance in complex samples using the graph-based GNASTy algorithm","authors":"Samuel T. Horsfield, Basil C.T. Fok, Yuhan Fu, Paul Turner, John A. Lees, Nicholas J. Croucher","doi":"10.1101/gr.279435.124","DOIUrl":"https://doi.org/10.1101/gr.279435.124","url":null,"abstract":"Serotype surveillance of <em>Streptococcus pneumoniae</em> (the pneumococcus) is critical for understanding the effectiveness of current vaccination strategies. However, existing methods for serotyping are limited in their ability to identify the co-carriage of multiple pneumococci and detect novel serotypes. To develop a scalable and portable serotyping method that overcomes these challenges, we employed Nanopore Adaptive Sampling (NAS), an on-sequencer enrichment method that selects for target DNA in real-time, for direct detection of <em>S. pneumoniae</em> in complex samples. Whereas NAS targeting the whole <em>S. pneumoniae</em> genome was ineffective in the presence of nonpathogenic streptococci, the method was both specific and sensitive when targeting the capsular biosynthetic locus (CBL), the operon that determines <em>S. pneumoniae</em> serotype. NAS significantly improved coverage and yield of the CBL relative to sequencing without NAS, and accurately quantified the relative prevalence of serotypes in samples representing co-carriage. To maximize the sensitivity of NAS to detect novel serotypes, we developed and benchmarked a new pangenome-graph algorithm, named GNASTy. We show that GNASTy outperforms the current NAS implementation, which is based on linear genome alignment, when a sample contains a serotype absent from the database of targeted sequences. The methods developed in this work provide an improved approach for novel serotype discovery and routine <em>S. pneumoniae</em> surveillance that is fast, accurate and feasible in low-resource settings. Although NAS facilitates whole-genome enrichment under ideal circumstances, GNASTy enables targeted enrichment to optimize serotype surveillance in complex samples.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"28 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisite long-read sequencing reveals the early contribution of somatic structural variations to HBV-related hepatocellular carcinoma tumorigenesis 多位点长读测序揭示了hbv相关肝细胞癌肿瘤发生的早期体细胞结构变异
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.279617.124
Tianfu Zeng, Haotian Liao, Lin Xia, Siyao You, Yanqun Huang, Jiaxun Zhang, Yahui Liu, Xuyan Liu, Dan Xie
{"title":"Multisite long-read sequencing reveals the early contribution of somatic structural variations to HBV-related hepatocellular carcinoma tumorigenesis","authors":"Tianfu Zeng, Haotian Liao, Lin Xia, Siyao You, Yanqun Huang, Jiaxun Zhang, Yahui Liu, Xuyan Liu, Dan Xie","doi":"10.1101/gr.279617.124","DOIUrl":"https://doi.org/10.1101/gr.279617.124","url":null,"abstract":"Somatic structural variations (SVs) represent a critical category of genomic mutations in hepatocellular carcinoma (HCC). However, the accurate identification of somatic SVs using short-read high-throughput sequencing (HTS) is challenging. Here, we applied long-read nanopore sequencing and multisite sampling in a cohort of 42 samples from five patients. We discovered a prominent presence of somatic SVs in adjacent nontumor tissues, which significantly differed from somatic single nucleotide variants (SNVs) and copy number variations (CNVs). The types of SVs were markedly different between adjacent nontumor and tumor tissues, with somatic insertions (INSs) and deletions (DELs) serving as early genomic alterations associated with HCC. Notably, hepatitis B virus (HBV) DNA integration frequently resulted in the generation of somatic SVs, particularly inducing interchromosomal translocations. While HBV DNA integration into the liver genome occurs randomly, multisite shared HBV-induced SVs are implicated as early driving events in the pathogenesis of HCC. Long-read RNA sequencing revealed that some HBV-induced SVs impact cancer-associated genes, with translocations being capable of inducing the formation of fusion genes. These findings enhance our understanding of somatic SVs in HCC and their role in early tumorigenesis.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"10 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAmbler resolves complex repeats in human Chromosomes 8, 19, and X RAmbler可以分解人类8号、19号和X号染色体中的复杂重复序列
IF 7 2区 生物学
Genome research Pub Date : 2025-03-04 DOI: 10.1101/gr.279308.124
Sakshar Chakravarty, Glennis Logsdon, Stefano Lonardi
{"title":"RAmbler resolves complex repeats in human Chromosomes 8, 19, and X","authors":"Sakshar Chakravarty, Glennis Logsdon, Stefano Lonardi","doi":"10.1101/gr.279308.124","DOIUrl":"https://doi.org/10.1101/gr.279308.124","url":null,"abstract":"Repetitive regions in eukaryotic genomes often contain important functional or regulatory elements. Despite significant algorithmic and technological advancements in genome sequencing and assembly over the past three decades, modern de novo assemblers still struggle to accurately reconstruct highly repetitive regions. In this work, we introduce RAmbler (Repeat Assembler), a reference-guided assembler specialized for the assembly of complex repetitive regions exclusively from PacBio HiFi reads. RAmbler (i) identifies repetitive regions by detecting unusually high coverage regions after mapping HiFi reads to the draft genome assembly, (ii) finds single-copy <em>k</em>-mers from the HiFi reads, (i.e., <em>k</em>-mers that are expected to occur only once in the genome), (iii) uses the relative location of single-copy <em>k</em>-mers to barcode each HiFi read, (iv) clusters HiFi reads based on their shared bar-codes, (v) generates contigs by assembling the reads in each cluster, and (vi) generates a consensus assembly from the overlap graph of the assembled contigs. Here we show that RAmbler can reconstruct human centromeres and other complex repeats to a quality comparable to the manually-curated telomere-to-telomere human genome assembly. Across over 250 synthetic datasets, RAmbler outperforms hifiasm, LJA, HiCANU, and Verkko across various parameters such as repeat lengths, number of repeats, heterozygosity rates and depth of sequencing.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"22 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estrogen-induced chromatin looping changes identify a subset of functional regulatory elements 雌激素诱导的染色质环改变确定了一个功能调控元件的子集
IF 7 2区 生物学
Genome research Pub Date : 2025-03-03 DOI: 10.1101/gr.279699.124
Hosiana Abewe, Alexandra Richey, Jeffery M. Vahrenkamp, Matthew Ginley-Hidinger, Craig M. Rush, Noel Kitchen, Xiaoyang Zhang, Jason Gertz
{"title":"Estrogen-induced chromatin looping changes identify a subset of functional regulatory elements","authors":"Hosiana Abewe, Alexandra Richey, Jeffery M. Vahrenkamp, Matthew Ginley-Hidinger, Craig M. Rush, Noel Kitchen, Xiaoyang Zhang, Jason Gertz","doi":"10.1101/gr.279699.124","DOIUrl":"https://doi.org/10.1101/gr.279699.124","url":null,"abstract":"Transcriptional enhancers can regulate individual or multiple genes through long-range three-dimensional (3D) genome interactions, and these interactions are commonly altered in cancer. Yet, the functional relationship between changes in 3D genome interactions associated with regulatory regions and differential gene expression appears context-dependent. In this study, we used HiChIP to capture changes in 3D genome interactions between active regulatory regions of endometrial cancer cells in response to estrogen treatment and uncovered significant differential long-range interactions strongly enriched for estrogen receptor alpha (ER, also known as ESR1)–bound sites (ERBSs). The ERBSs anchoring differential chromatin loops with either a gene's promoter or distal regions were correlated with larger transcriptional responses to estrogen compared with ERBSs not involved in differential 3D genome interactions. To functionally test this observation, CRISPR-based Enhancer-i was used to deactivate specific ERBSs, which revealed a wide range of effects on the transcriptional response to estrogen. However, these effects are only subtly and not significantly stronger for ERBSs in differential chromatin loops. In addition, we observed an enrichment of 3D genome interactions between the promoters of estrogen-upregulated genes and found that looped promoters can work together cooperatively. Overall, our work reveals that estrogen treatment causes large changes in 3D genome structure in endometrial cancer cells; however, these changes are not required for a regulatory region to contribute to an estrogen transcriptional response.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"14 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality assessment of long read data in multisample lrRNA-seq experiments with SQANTI-reads SQANTI-reads对多样本lrna -seq实验中长读数据的质量评估
IF 7 2区 生物学
Genome research Pub Date : 2025-03-03 DOI: 10.1101/gr.280021.124
Netanya Keil, Carolina Monzó, Lauren McIntyre, Ana Conesa
{"title":"Quality assessment of long read data in multisample lrRNA-seq experiments with SQANTI-reads","authors":"Netanya Keil, Carolina Monzó, Lauren McIntyre, Ana Conesa","doi":"10.1101/gr.280021.124","DOIUrl":"https://doi.org/10.1101/gr.280021.124","url":null,"abstract":"SQANTI-reads leverages SQANTI3, a tool for the analysis of the quality of transcript models, to develop a read-level quality control framework for replicated long-read RNA-seq experiments. The number and distribution of reads, as well as the number and distribution of unique junction chains (transcript splicing patterns), in SQANTI3 structural categories are informative of raw data quality. Multisample visualizations of QC metrics are presented by experimental design factors to identify outliers. We introduce new metrics for 1) the identification of potentially under-annotated genes and putative novel transcripts and for 2) quantifying variation in junction donors and acceptors. We applied SQANTI-reads to two different datasets, a <em>Drosophila</em> developmental experiment and a multiplatform dataset from the LRGASP project and demonstrate that the tool effectively reveals the impact of read coverage on data quality, and readily identifies strong and weak splicing sites.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"18 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信