Genome MedicinePub Date : 2024-10-07DOI: 10.1186/s13073-024-01387-4
Leonardo D Garma, Miguel Quintela-Fandino
{"title":"Applicability of epigenetic age models to next-generation methylation arrays.","authors":"Leonardo D Garma, Miguel Quintela-Fandino","doi":"10.1186/s13073-024-01387-4","DOIUrl":"10.1186/s13073-024-01387-4","url":null,"abstract":"<p><strong>Background: </strong>Epigenetic clocks are mathematical models used to estimate epigenetic age based on DNA methylation at specific CpG sites. As new methylation microarrays are developed and older models discontinued, existing epigenetic clocks might become obsolete. Here, we explored the effects of the changes introduced in the new EPICv2 DNA methylation array on existing epigenetic clocks.</p><p><strong>Methods: </strong>We tested the performance of four epigenetic clocks on the probeset of the EPICv2 array using a dataset of 10,835 samples. We developed a new epigenetic age prediction model compatible across the 450 k, EPICv1, and EPICv2 microarrays and validated it on 2095 samples. We estimated technical noise and intra-subject variation using two datasets with repeated sampling. We used data from (i) cancer survivors who had undergone different therapies, (ii) breast cancer patients and controls, and (iii) an exercise-based interventional study, to test the ability of our model to detect alterations in epigenetic age acceleration in response to theoretically antiaging interventions.</p><p><strong>Results: </strong>The results of the four epiclocks tested are significantly distorted by the EPICv2 probeset, causing an average difference of up to 25 years. Our new model produced highly accurate chronological age predictions, comparable to a state-of-the-art epiclock. The model reported the lowest epigenetic age acceleration in normal populations, as well as the lowest variation across technical replicates and repeated samples from the same subjects. Finally, our model reproduced previous results of increased epigenetic age acceleration in cancer patients and in survivors treated with radiation therapy, and no changes from exercise-based interventions.</p><p><strong>Conclusion: </strong>Existing epigenetic clocks require updates for full EPICv2 compatibility. Our new model translates the capabilities of state-of-the-art epigenetic clocks to the EPICv2 platform and is cross-compatible with older microarrays. The characterization of epigenetic age prediction variation provides useful metrics to contextualize the relevance of epigenetic age alterations. The analysis of data from subjects influenced by radiation, cancer, and exercise-based interventions shows that despite being good predictors of chronological age, neither a pathological state like breast cancer, a hazardous environmental factor (radiation), nor exercise (a beneficial intervention) caused significant changes in the values of the \"epigenetic age\" determined by these first-generation models.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"116"},"PeriodicalIF":10.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-10-07DOI: 10.1186/s13073-024-01389-2
Sven Halbedel, Sabrina Wamp, Raskit Lachmann, Alexandra Holzer, Ariane Pietzka, Werner Ruppitsch, Hendrik Wilking, Antje Flieger
{"title":"High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany.","authors":"Sven Halbedel, Sabrina Wamp, Raskit Lachmann, Alexandra Holzer, Ariane Pietzka, Werner Ruppitsch, Hendrik Wilking, Antje Flieger","doi":"10.1186/s13073-024-01389-2","DOIUrl":"https://doi.org/10.1186/s13073-024-01389-2","url":null,"abstract":"<p><strong>Background: </strong>Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages.</p><p><strong>Methods: </strong>We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties.</p><p><strong>Results: </strong>The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs.</p><p><strong>Conclusions: </strong>Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"115"},"PeriodicalIF":10.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-27DOI: 10.1186/s13073-024-01385-6
Soo-Whee Kim, Hyeji Lee, Da Yea Song, Gang-Hee Lee, Jungeun Ji, Jung Woo Park, Jae Hyun Han, Jee Won Lee, Hee Jung Byun, Ji Hyun Son, Ye Rim Kim, Yoojeong Lee, Jaewon Kim, Ashish Jung, Junehawk Lee, Eunha Kim, So Hyun Kim, Jeong Ho Lee, F Kyle Satterstrom, Santhosh Girirajan, Anders D Børglum, Jakob Grove, Eunjoon Kim, Donna M Werling, Hee Jeong Yoo, Joon-Yong An
{"title":"Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism.","authors":"Soo-Whee Kim, Hyeji Lee, Da Yea Song, Gang-Hee Lee, Jungeun Ji, Jung Woo Park, Jae Hyun Han, Jee Won Lee, Hee Jung Byun, Ji Hyun Son, Ye Rim Kim, Yoojeong Lee, Jaewon Kim, Ashish Jung, Junehawk Lee, Eunha Kim, So Hyun Kim, Jeong Ho Lee, F Kyle Satterstrom, Santhosh Girirajan, Anders D Børglum, Jakob Grove, Eunjoon Kim, Donna M Werling, Hee Jeong Yoo, Joon-Yong An","doi":"10.1186/s13073-024-01385-6","DOIUrl":"10.1186/s13073-024-01385-6","url":null,"abstract":"<p><strong>Background: </strong>Whole-genome sequencing (WGS) analyses have found higher genetic burden in autistic females compared to males, supporting higher liability threshold in females. However, genomic evidence of sex differences has been limited to European ancestry to date and little is known about how genetic variation leads to autism-related traits within families across sex.</p><p><strong>Methods: </strong>To address this gap, we present WGS data of Korean autism families (n = 2255) and a Korean general population sample (n = 2500), the largest WGS data of East Asian ancestry. We analyzed sex differences in genetic burden and compared with cohorts of European ancestry (n = 15,839). Further, with extensively collected family-wise Korean autism phenotype data (n = 3730), we investigated sex differences in phenotypic scores and gene-phenotype associations within family.</p><p><strong>Results: </strong>We observed robust female enrichment of de novo protein-truncating variants in autistic individuals across cohorts. However, sex differences in polygenic burden varied across cohorts and we found that the differential proportion of comorbid intellectual disability and severe autism symptoms mainly drove these variations. In siblings, males of autistic females exhibited the most severe social communication deficits. Female siblings exhibited lower phenotypic severity despite the higher polygenic burden than male siblings. Mothers also showed higher tolerance for polygenic burden than fathers, supporting higher liability threshold in females.</p><p><strong>Conclusions: </strong>Our findings indicate that genetic liability in autism is both sex- and phenotype-dependent, expanding the current understanding of autism's genetic complexity. Our work further suggests that family-based assessments of sex differences can help unravel underlying sex-differential liability in autism.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"114"},"PeriodicalIF":10.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-19DOI: 10.1186/s13073-024-01382-9
Bing Xiao, Xiaomei Luo, Yi Liu, Hui Ye, Huili Liu, Yanjie Fan, Yongguo Yu
{"title":"Combining optical genome mapping and RNA-seq for structural variants detection and interpretation in unsolved neurodevelopmental disorders","authors":"Bing Xiao, Xiaomei Luo, Yi Liu, Hui Ye, Huili Liu, Yanjie Fan, Yongguo Yu","doi":"10.1186/s13073-024-01382-9","DOIUrl":"https://doi.org/10.1186/s13073-024-01382-9","url":null,"abstract":"Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases—two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5′UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5′ and 3′ non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"19 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-13DOI: 10.1186/s13073-024-01378-5
Adrian F. Daly, Leslie A. Dunnington, David F. Rodriguez-Buritica, Erica Spiegel, Francesco Brancati, Giovanna Mantovani, Vandana M. Rawal, Fabio Rueda Faucz, Hadia Hijazi, Jean-Hubert Caberg, Anna Maria Nardone, Mario Bengala, Paola Fortugno, Giulia Del Sindaco, Marta Ragonese, Helen Gould, Salvatore Cannavò, Patrick Pétrossians, Andrea Lania, James R. Lupski, Albert Beckers, Constantine A. Stratakis, Brynn Levy, Giampaolo Trivellin, Martin Franke
{"title":"Chromatin conformation capture in the clinic: 4C-seq/HiC distinguishes pathogenic from neutral duplications at the GPR101 locus","authors":"Adrian F. Daly, Leslie A. Dunnington, David F. Rodriguez-Buritica, Erica Spiegel, Francesco Brancati, Giovanna Mantovani, Vandana M. Rawal, Fabio Rueda Faucz, Hadia Hijazi, Jean-Hubert Caberg, Anna Maria Nardone, Mario Bengala, Paola Fortugno, Giulia Del Sindaco, Marta Ragonese, Helen Gould, Salvatore Cannavò, Patrick Pétrossians, Andrea Lania, James R. Lupski, Albert Beckers, Constantine A. Stratakis, Brynn Levy, Giampaolo Trivellin, Martin Franke","doi":"10.1186/s13073-024-01378-5","DOIUrl":"https://doi.org/10.1186/s13073-024-01378-5","url":null,"abstract":"X-linked acrogigantism (X-LAG; MIM: 300942) is a severe form of pituitary gigantism caused by chromosome Xq26.3 duplications involving GPR101. X-LAG-associated duplications disrupt the integrity of the topologically associating domain (TAD) containing GPR101 and lead to the formation of a neo-TAD that drives pituitary GPR101 misexpression and gigantism. As X-LAG is fully penetrant and heritable, duplications involving GPR101 identified on prenatal screening studies, like amniocentesis, can pose an interpretation challenge for medical geneticists and raise important concerns for patients and families. Therefore, providing robust information on the functional genomic impact of such duplications has important research and clinical value with respect to gene regulation and triplosensitivity traits. We employed 4C/HiC-seq as a clinical tool to determine the functional impact of incidentally discovered GPR101 duplications on TAD integrity in three families. After defining duplications and breakpoints around GPR101 by clinical-grade and high-density aCGH, we constructed 4C/HiC chromatin contact maps for our study population and compared them with normal and active (X-LAG) controls. We showed that duplications involving GPR101 that preserved the centromeric invariant TAD boundary did not generate a pathogenic neo-TAD and that ectopic enhancers were not adopted. This allowed us to discount presumptive/suspected X-LAG diagnoses and GPR101 misexpression, obviating the need for intensive clinical follow-up. This study highlights the importance of TAD boundaries and chromatin interactions in determining the functional impact of copy number variants and provides proof-of-concept for using 4C/HiC-seq as a clinical tool to acquire crucial information for genetic counseling and to support clinical decision-making in cases of suspected TADopathies.","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"20 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-09DOI: 10.1186/s13073-024-01380-x
Sarah Buddle, Leysa Forrest, Naomi Akinsuyi, Luz Marina Martin Bernal, Tony Brooks, Cristina Venturini, Charles Miller, Julianne R. Brown, Nathaniel Storey, Laura Atkinson, Timothy Best, Sunando Roy, Sian Goldsworthy, Sergi Castellano, Peter Simmonds, Heli Harvala, Tanya Golubchik, Rachel Williams, Judith Breuer, Sofia Morfopoulou, Oscar Enrique Torres Montaguth
{"title":"Evaluating metagenomics and targeted approaches for diagnosis and surveillance of viruses","authors":"Sarah Buddle, Leysa Forrest, Naomi Akinsuyi, Luz Marina Martin Bernal, Tony Brooks, Cristina Venturini, Charles Miller, Julianne R. Brown, Nathaniel Storey, Laura Atkinson, Timothy Best, Sunando Roy, Sian Goldsworthy, Sergi Castellano, Peter Simmonds, Heli Harvala, Tanya Golubchik, Rachel Williams, Judith Breuer, Sofia Morfopoulou, Oscar Enrique Torres Montaguth","doi":"10.1186/s13073-024-01380-x","DOIUrl":"https://doi.org/10.1186/s13073-024-01380-x","url":null,"abstract":"Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Workflows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investigated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, which allows the selective sequencing of known pathogens and could improve sensitivity. We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illumina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock community in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers. Capture with the Twist CVRP increased sensitivity by at least 10–100-fold over untargeted sequencing, making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitivity at high viral loads (60,000 gc/ml), at lower viral loads (600–6000 gc/ml), longer and more costly sequencing runs would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing but possible with both the CVRP and ONT. Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal method will depend on the clinical context.\u0000","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"2 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-09DOI: 10.1186/s13073-024-01381-w
Carolina Jaramillo Oquendo, Htoo A. Wai, Wil I. Rich, David J. Bunyan, N. Simon Thomas, David Hunt, Jenny Lord, Andrew G. L. Douglas, Diana Baralle
{"title":"Identification of diagnostic candidates in Mendelian disorders using an RNA sequencing-centric approach","authors":"Carolina Jaramillo Oquendo, Htoo A. Wai, Wil I. Rich, David J. Bunyan, N. Simon Thomas, David Hunt, Jenny Lord, Andrew G. L. Douglas, Diana Baralle","doi":"10.1186/s13073-024-01381-w","DOIUrl":"https://doi.org/10.1186/s13073-024-01381-w","url":null,"abstract":"RNA sequencing (RNA-seq) is increasingly being used as a complementary tool to DNA sequencing in diagnostics where DNA analysis has been uninformative. RNA-seq enables the identification of aberrant splicing and aberrant gene expression, improving the interpretation of variants of unknown significance (VUSs), and provides the opportunity to scan the transcriptome for aberrant splicing and expression in relevant genes that may be the cause of a patient’s phenotype. This work aims to investigate the feasibility of generating new diagnostic candidates in patients without a previously reported VUS using an RNA-seq-centric approach. We systematically assessed the transcriptomic profiles of 86 patients with suspected Mendelian disorders, 38 of whom had no candidate sequence variant, using RNA from blood samples. Each VUS was visually inspected to search for splicing abnormalities. Once aberrant splicing was identified in cases with VUS, multiple open-source alternative splicing tools were used to investigate if they would identify what was observed in IGV. Expression outliers were detected using OUTRIDER. Diagnoses in cases without a VUS were explored using two separate strategies. RNA-seq allowed us to assess 71% of VUSs, detecting aberrant splicing in 14/48 patients with a VUS. We identified four new diagnoses by detecting novel aberrant splicing events in patients with no candidate sequence variants from prior DNA testing (n = 32) or where the candidate VUS did not affect splicing (n = 23). An additional diagnosis was made through the detection of skewed X-inactivation. This work demonstrates the utility of an RNA-centric approach in identifying novel diagnoses in patients without candidate VUSs. It underscores the utility of blood-based RNA analysis in improving diagnostic yields and highlights optimal approaches for such analyses.\u0000","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"5 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-09-04DOI: 10.1186/s13073-024-01379-4
Odion O Ikhimiukor, Lisa Mingle, Samantha E Wirth, Damaris V Mendez-Vallellanes, Hannah Hoyt, Kimberlee A Musser, William J Wolfgang, Cheryl P Andam
{"title":"Long-term persistence of diverse clones shapes the transmission landscape of invasive Listeria monocytogenes.","authors":"Odion O Ikhimiukor, Lisa Mingle, Samantha E Wirth, Damaris V Mendez-Vallellanes, Hannah Hoyt, Kimberlee A Musser, William J Wolfgang, Cheryl P Andam","doi":"10.1186/s13073-024-01379-4","DOIUrl":"10.1186/s13073-024-01379-4","url":null,"abstract":"<p><strong>Background: </strong>The foodborne bacterium Listeria monocytogenes (Lm) causes a range of diseases, from mild gastroenteritis to invasive infections that have high fatality rate in vulnerable individuals. Understanding the population genomic structure of invasive Lm is critical to informing public health interventions and infection control policies that will be most effective especially in local and regional communities.</p><p><strong>Methods: </strong>We sequenced the whole draft genomes of 936 Lm isolates from human clinical samples obtained in a two-decade active surveillance program across 58 counties in New York State, USA. Samples came mostly from blood and cerebrospinal fluid. We characterized the phylogenetic relationships, population structure, antimicrobial resistance genes, virulence genes, and mobile genetic elements.</p><p><strong>Results: </strong>The population is genetically heterogenous, consisting of lineages I-IV, 89 clonal complexes, 200 sequence types, and six known serogroups. In addition to intrinsic antimicrobial resistance genes (fosX, lin, norB, and sul), other resistance genes tetM, tetS, ermG, msrD, and mefA were sparsely distributed in the population. Within each lineage, we identified clusters of isolates with ≤ 20 single nucleotide polymorphisms in the core genome alignment. These clusters may represent isolates that share a most recent common ancestor, e.g., they are derived from the same contamination source or demonstrate evidence of transmission or outbreak. We identified 38 epidemiologically linked clusters of isolates, confirming eight previously reported disease outbreaks and the discovery of cryptic outbreaks and undetected chains of transmission, even in the rarely reported Lm lineage III (ST3171). The presence of animal-associated lineages III and IV may suggest a possible spillover of animal-restricted strains to humans. Many transmissible clones persisted over several years and traversed distant sites across the state.</p><p><strong>Conclusions: </strong>Our findings revealed the bacterial determinants of invasive listeriosis, driven mainly by the diversity of locally circulating lineages, intrinsic and mobile antimicrobial resistance and virulence genes, and persistence across geographical and temporal scales. Our findings will inform public health efforts to reduce the burden of invasive listeriosis, including the design of food safety measures, source traceback, and outbreak detection.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"109"},"PeriodicalIF":10.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-08-28DOI: 10.1186/s13073-024-01371-y
Yingjie Zhu, Xin Pei, Ardijana Novaj, Jeremy Setton, Daniel Bronder, Fatemeh Derakhshan, Pier Selenica, Niamh McDermott, Mehmet Orman, Sarina Plum, Shyamal Subramanyan, Sara H Braverman, Biko McMillan, Sonali Sinha, Jennifer Ma, Andrea Gazzo, Atif Khan, Samuel Bakhoum, Simon N Powell, Jorge S Reis-Filho, Nadeem Riaz
{"title":"Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors.","authors":"Yingjie Zhu, Xin Pei, Ardijana Novaj, Jeremy Setton, Daniel Bronder, Fatemeh Derakhshan, Pier Selenica, Niamh McDermott, Mehmet Orman, Sarina Plum, Shyamal Subramanyan, Sara H Braverman, Biko McMillan, Sonali Sinha, Jennifer Ma, Andrea Gazzo, Atif Khan, Samuel Bakhoum, Simon N Powell, Jorge S Reis-Filho, Nadeem Riaz","doi":"10.1186/s13073-024-01371-y","DOIUrl":"10.1186/s13073-024-01371-y","url":null,"abstract":"<p><strong>Background: </strong>Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear.</p><p><strong>Methods: </strong>We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher's exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations.</p><p><strong>Results: </strong>We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation.</p><p><strong>Conclusions: </strong>This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"108"},"PeriodicalIF":10.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-08-27DOI: 10.1186/s13073-024-01365-w
Yosr Hamdi, Mediha Trabelsi, Kais Ghedira, Maroua Boujemaa, Ikhlas Ben Ayed, Cherine Charfeddine, Amal Souissi, Imen Rejeb, Wafa Kammoun Rebai, Chaima Hkimi, Fadoua Neifar, Nouha Jandoubi, Rahma Mkaouar, Melek Chaouch, Ayda Bennour, Selim Kamoun, Hend Chaker Masmoudi, Nabil Abid, Maha Mezghani Khemakhem, Saber Masmoudi, Ali Saad, Lamia BenJemaa, Alia BenKahla, Samir Boubaker, Ridha Mrad, Hassen Kamoun, Sonia Abdelhak, Moez Gribaa, Neila Belguith, Najla Kharrat, Dorra Hmida, Ahmed Rebai
{"title":"Genome Tunisia Project: paving the way for precision medicine in North Africa.","authors":"Yosr Hamdi, Mediha Trabelsi, Kais Ghedira, Maroua Boujemaa, Ikhlas Ben Ayed, Cherine Charfeddine, Amal Souissi, Imen Rejeb, Wafa Kammoun Rebai, Chaima Hkimi, Fadoua Neifar, Nouha Jandoubi, Rahma Mkaouar, Melek Chaouch, Ayda Bennour, Selim Kamoun, Hend Chaker Masmoudi, Nabil Abid, Maha Mezghani Khemakhem, Saber Masmoudi, Ali Saad, Lamia BenJemaa, Alia BenKahla, Samir Boubaker, Ridha Mrad, Hassen Kamoun, Sonia Abdelhak, Moez Gribaa, Neila Belguith, Najla Kharrat, Dorra Hmida, Ahmed Rebai","doi":"10.1186/s13073-024-01365-w","DOIUrl":"10.1186/s13073-024-01365-w","url":null,"abstract":"<p><strong>Background: </strong>Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients.</p><p><strong>Methods: </strong>A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system.</p><p><strong>Results: </strong>In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector.</p><p><strong>Conclusions: </strong>Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"104"},"PeriodicalIF":10.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}