Genome Medicine最新文献

筛选
英文 中文
A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination. 基于基因组的四十年来挪威侵袭性肺炎球菌调查揭示了特定血统对疫苗接种的反应。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-25 DOI: 10.1186/s13073-024-01396-3
Vegard Eldholm, Magnus N Osnes, Martha L Bjørnstad, Daniel Straume, Rebecca A Gladstone
{"title":"A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination.","authors":"Vegard Eldholm, Magnus N Osnes, Martha L Bjørnstad, Daniel Straume, Rebecca A Gladstone","doi":"10.1186/s13073-024-01396-3","DOIUrl":"10.1186/s13073-024-01396-3","url":null,"abstract":"<p><strong>Background: </strong>Streptococcus pneumoniae is a major cause of mortality globally. The introduction of pneumococcal conjugate vaccines (PCVs) has reduced the incidence of the targeted serotypes significantly, but expansion of non-targeted serotypes, serotype replacement, and incomplete vaccine-targeting contribute to pneumococcal disease in the vaccine era. Here, we characterize the changing population genetic landscape of S. pneumoniae in Norway over a 41-year period (1982-2022).</p><p><strong>Methods: </strong>Since 2018, all cases of invasive pneumococcal disease have undergone whole-genome sequencing (WGS) at the Norwegian Institute of Public Health. In order to characterize the changing population over time, historical isolates were re-cultured and sequenced, resulting in a historical WGS dataset. Isolates were assigned to global pneumococcal sequence clusters (GPSCs) using PathogenWatch and assigned to serotypes using in silico (SeroBA) and in vitro methods (Quellung reaction). Temporal phylogenetic analyses were performed on GPSCs of particular interest.</p><p><strong>Results: </strong>The availability of WGS data allowed us to study capsular variation at the level of individual lineages. We detect highly divergent fates for different GPSCs following the introduction of PCVs. For two out of eight major GPSCs, we identified multiple instances of serotype switching from vaccine types to non-vaccine types. Dating analyses suggest that most instances of serotype switching predated the introduction of PCVs, but expansion occurred after their introduction. Furthermore, selection for penicillin non-susceptibility was not a driving force for the changing serotype distribution within the GPSCs over time.</p><p><strong>Conclusions: </strong>PCVs have been major shapers of the Norwegian disease-causing pneumococcal population, both at the level of serotype distributions and the underlying lineage dynamics. Overall, the introduction of PCVs has reduced the incidence of invasive disease. However, some GPSCs initially dominated by vaccine types escaped the effect of vaccination through expansion of non-vaccine serotypes. Close monitoring of circulating lineages and serotypes will be key for ensuring optimal vaccination coverage going forward.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"123"},"PeriodicalIF":10.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomic integration analysis identifies atherogenic metabolites mediating between novel immune genes and cardiovascular risk. 多组学整合分析确定了介于新型免疫基因和心血管风险之间的致动脉粥样硬化代谢物。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-24 DOI: 10.1186/s13073-024-01397-2
Robert Carreras-Torres, Iván Galván-Femenía, Xavier Farré, Beatriz Cortés, Virginia Díez-Obrero, Anna Carreras, Ferran Moratalla-Navarro, Susana Iraola-Guzmán, Natalia Blay, Mireia Obón-Santacana, Víctor Moreno, Rafael de Cid
{"title":"Multiomic integration analysis identifies atherogenic metabolites mediating between novel immune genes and cardiovascular risk.","authors":"Robert Carreras-Torres, Iván Galván-Femenía, Xavier Farré, Beatriz Cortés, Virginia Díez-Obrero, Anna Carreras, Ferran Moratalla-Navarro, Susana Iraola-Guzmán, Natalia Blay, Mireia Obón-Santacana, Víctor Moreno, Rafael de Cid","doi":"10.1186/s13073-024-01397-2","DOIUrl":"10.1186/s13073-024-01397-2","url":null,"abstract":"<p><strong>Background: </strong>Understanding genetic-metabolite associations has translational implications for informing cardiovascular risk assessment. Interrogating functional genetic variants enhances our understanding of disease pathogenesis and the development and optimization of targeted interventions.</p><p><strong>Methods: </strong>In this study, a total of 187 plasma metabolite levels were profiled in 4974 individuals of European ancestry of the GCAT| Genomes for Life cohort. Results of genetic analyses were meta-analysed with additional datasets, resulting in up to approximately 40,000 European individuals. Results of meta-analyses were integrated with reference gene expression panels from 58 tissues and cell types to identify predicted gene expression associated with metabolite levels. This approach was also performed for cardiovascular outcomes in three independent large European studies (N = 700,000) to identify predicted gene expression additionally associated with cardiovascular risk. Finally, genetically informed mediation analysis was performed to infer causal mediation in the relationship between gene expression, metabolite levels and cardiovascular risk.</p><p><strong>Results: </strong>A total of 44 genetic loci were associated with 124 metabolites. Lead genetic variants included 11 non-synonymous variants. Predicted expression of 53 fine-mapped genes was associated with 108 metabolite levels; while predicted expression of 6 of these genes was also associated with cardiovascular outcomes, highlighting a new role for regulatory gene HCG27. Additionally, we found that atherogenic metabolite levels mediate the associations between gene expression and cardiovascular risk. Some of these genes showed stronger associations in immune tissues, providing further evidence of the role of immune cells in increasing cardiovascular risk.</p><p><strong>Conclusions: </strong>These findings propose new gene targets that could be potential candidates for drug development aimed at lowering the risk of cardiovascular events through the modulation of blood atherogenic metabolite levels.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"122"},"PeriodicalIF":10.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations. 携带人类 MIR96 基因突变的小鼠听力损失的病理机制和候选治疗方法。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-21 DOI: 10.1186/s13073-024-01394-5
Morag A Lewis, Maria Lachgar-Ruiz, Francesca Di Domenico, Graham Duddy, Jing Chen, Sergio Fernandez, Matias Morin, Gareth Williams, Miguel Angel Moreno Pelayo, Karen P Steel
{"title":"Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations.","authors":"Morag A Lewis, Maria Lachgar-Ruiz, Francesca Di Domenico, Graham Duddy, Jing Chen, Sergio Fernandez, Matias Morin, Gareth Williams, Miguel Angel Moreno Pelayo, Karen P Steel","doi":"10.1186/s13073-024-01394-5","DOIUrl":"10.1186/s13073-024-01394-5","url":null,"abstract":"<p><strong>Background: </strong>Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes.</p><p><strong>Methods: </strong>Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets.</p><p><strong>Results: </strong>While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice.</p><p><strong>Conclusions: </strong>Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"121"},"PeriodicalIF":10.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating metabolomics and proteomics to identify novel drug targets for heart failure and atrial fibrillation. 整合代谢组学和蛋白质组学,确定治疗心力衰竭和心房颤动的新型药物靶点。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-21 DOI: 10.1186/s13073-024-01395-4
Marion van Vugt, Chris Finan, Sandesh Chopade, Rui Providencia, Connie R Bezzina, Folkert W Asselbergs, Jessica van Setten, A Floriaan Schmidt
{"title":"Integrating metabolomics and proteomics to identify novel drug targets for heart failure and atrial fibrillation.","authors":"Marion van Vugt, Chris Finan, Sandesh Chopade, Rui Providencia, Connie R Bezzina, Folkert W Asselbergs, Jessica van Setten, A Floriaan Schmidt","doi":"10.1186/s13073-024-01395-4","DOIUrl":"10.1186/s13073-024-01395-4","url":null,"abstract":"<p><strong>Background: </strong>Altered metabolism plays a role in the pathophysiology of cardiac diseases, such as atrial fibrillation (AF) and heart failure (HF). We aimed to identify novel plasma metabolites and proteins associating with cardiac disease.</p><p><strong>Methods: </strong>Mendelian randomisation (MR) was used to assess the association of 174 metabolites measured in up to 86,507 participants with AF, HF, dilated cardiomyopathy (DCM), and non-ischemic cardiomyopathy (NICM). Subsequently, we sourced data on 1567 plasma proteins and performed cis MR to identify proteins affecting the identified metabolites as well as the cardiac diseases. Proteins were prioritised on cardiac expression and druggability, and mapped to biological pathways.</p><p><strong>Results: </strong>We identified 35 metabolites associating with cardiac disease. AF was affected by seventeen metabolites, HF by nineteen, DCM by four, and NCIM by taurine. HF was particularly enriched for phosphatidylcholines (p = 0.029) and DCM for acylcarnitines (p = 0.001). Metabolite involvement with AF was more uniform, spanning for example phosphatidylcholines, amino acids, and acylcarnitines. We identified 38 druggable proteins expressed in cardiac tissue, with a directionally concordant effect on metabolites and cardiac disease. We recapitulated known associations, for example between the drug target of digoxin (AT1B2), taurine and NICM risk. Additionally, we identified numerous novel findings, such as higher RET values associating with phosphatidylcholines and decreasing AF and HF. RET is targeted by drugs such as regorafenib which has known cardiotoxic side-effects. Pathway analysis implicated involvement of GDF15 signalling through RET, and ghrelin regulation of energy homeostasis in cardiac pathogenesis.</p><p><strong>Conclusions: </strong>This study identified 35 plasma metabolites involved with cardiac diseases and linked these to 38 druggable proteins, providing actionable leads for drug development.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"120"},"PeriodicalIF":10.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A validated heart-specific model for splice-disrupting variants in childhood heart disease. 儿童心脏病中剪接干扰变异的特异性心脏模型经过验证。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-15 DOI: 10.1186/s13073-024-01383-8
Robert Lesurf, Jeroen Breckpot, Jade Bouwmeester, Nour Hanafi, Anjali Jain, Yijing Liang, Tanya Papaz, Jane Lougheed, Tapas Mondal, Mahmoud Alsalehi, Luis Altamirano-Diaz, Erwin Oechslin, Enrique Audain, Gregor Dombrowsky, Alex V Postma, Odilia I Woudstra, Berto J Bouma, Marc-Phillip Hitz, Connie R Bezzina, Gillian M Blue, David S Winlaw, Seema Mital
{"title":"A validated heart-specific model for splice-disrupting variants in childhood heart disease.","authors":"Robert Lesurf, Jeroen Breckpot, Jade Bouwmeester, Nour Hanafi, Anjali Jain, Yijing Liang, Tanya Papaz, Jane Lougheed, Tapas Mondal, Mahmoud Alsalehi, Luis Altamirano-Diaz, Erwin Oechslin, Enrique Audain, Gregor Dombrowsky, Alex V Postma, Odilia I Woudstra, Berto J Bouma, Marc-Phillip Hitz, Connie R Bezzina, Gillian M Blue, David S Winlaw, Seema Mital","doi":"10.1186/s13073-024-01383-8","DOIUrl":"https://doi.org/10.1186/s13073-024-01383-8","url":null,"abstract":"<p><strong>Background: </strong>Congenital heart disease (CHD) is the most common congenital anomaly. Almost 90% of isolated cases have an unexplained genetic etiology after clinical testing. Non-canonical splice variants that disrupt mRNA splicing through the loss or creation of exon boundaries are not routinely captured and/or evaluated by standard clinical genetic tests. Recent computational algorithms such as SpliceAI have shown an ability to predict such variants, but are not specific to cardiac-expressed genes and transcriptional isoforms.</p><p><strong>Methods: </strong>We used genome sequencing (GS) (n = 1101 CHD probands) and myocardial RNA-Sequencing (RNA-Seq) (n = 154 CHD and n = 43 cardiomyopathy probands) to identify and validate splice disrupting variants, and to develop a heart-specific model for canonical and non-canonical splice variants that can be applied to patients with CHD and cardiomyopathy. Two thousand five hundred seventy GS samples from the Medical Genome Reference Bank were analyzed as healthy controls.</p><p><strong>Results: </strong>Of 8583 rare DNA splice-disrupting variants initially identified using SpliceAI, 100 were associated with altered splice junctions in the corresponding patient myocardium affecting 95 genes. Using strength of myocardial gene expression and genome-wide DNA variant features that were confirmed to affect splicing in myocardial RNA, we trained a machine learning model for predicting cardiac-specific splice-disrupting variants (AUC 0.86 on internal validation). In a validation set of 48 CHD probands, the cardiac-specific model outperformed a SpliceAI model alone (AUC 0.94 vs 0.67 respectively). Application of this model to an additional 947 CHD probands with only GS data identified 1% patients with canonical and 11% patients with non-canonical splice-disrupting variants in CHD genes. Forty-nine percent of predicted splice-disrupting variants were intronic and > 10 bp from existing splice junctions. The burden of high-confidence splice-disrupting variants in CHD genes was 1.28-fold higher in CHD cases compared with healthy controls.</p><p><strong>Conclusions: </strong>A new cardiac-specific in silico model was developed using complementary GS and RNA-Seq data that improved genetic yield by identifying a significant burden of non-canonical splice variants associated with CHD that would not be detectable through panel or exome sequencing.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"119"},"PeriodicalIF":10.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA demethylation triggers cell free DNA release in colorectal cancer cells. DNA 去甲基化引发结直肠癌细胞释放游离 DNA。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-09 DOI: 10.1186/s13073-024-01386-5
Valeria Pessei, Marco Macagno, Elisa Mariella, Noemi Congiusta, Vittorio Battaglieri, Paolo Battuello, Marco Viviani, Giulia Gionfriddo, Simona Lamba, Annalisa Lorenzato, Daniele Oddo, Fariha Idrees, Alessandro Cavaliere, Alice Bartolini, Simonetta Guarrera, Michael Linnebacher, Laura Monteonofrio, Luca Cardone, Michele Milella, Andrea Bertotti, Silvia Soddu, Elena Grassi, Giovanni Crisafulli, Alberto Bardelli, Ludovic Barault, Federica Di Nicolantonio
{"title":"DNA demethylation triggers cell free DNA release in colorectal cancer cells.","authors":"Valeria Pessei, Marco Macagno, Elisa Mariella, Noemi Congiusta, Vittorio Battaglieri, Paolo Battuello, Marco Viviani, Giulia Gionfriddo, Simona Lamba, Annalisa Lorenzato, Daniele Oddo, Fariha Idrees, Alessandro Cavaliere, Alice Bartolini, Simonetta Guarrera, Michael Linnebacher, Laura Monteonofrio, Luca Cardone, Michele Milella, Andrea Bertotti, Silvia Soddu, Elena Grassi, Giovanni Crisafulli, Alberto Bardelli, Ludovic Barault, Federica Di Nicolantonio","doi":"10.1186/s13073-024-01386-5","DOIUrl":"10.1186/s13073-024-01386-5","url":null,"abstract":"<p><strong>Background: </strong>Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release.</p><p><strong>Methods: </strong>We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release.</p><p><strong>Results: </strong>Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding.</p><p><strong>Conclusions: </strong>Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"118"},"PeriodicalIF":10.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanopore sequencing with unique molecular identifiers enables accurate mutation analysis and haplotyping in the complex lipoprotein(a) KIV-2 VNTR. 利用独特的分子标识符进行纳米孔测序,可对复杂的脂蛋白(a)KIV-2 VNTR 进行准确的突变分析和单倍分型。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-08 DOI: 10.1186/s13073-024-01391-8
Stephan Amstler, Gertraud Streiter, Cathrin Pfurtscheller, Lukas Forer, Silvia Di Maio, Hansi Weissensteiner, Bernhard Paulweber, Sebastian Schönherr, Florian Kronenberg, Stefan Coassin
{"title":"Nanopore sequencing with unique molecular identifiers enables accurate mutation analysis and haplotyping in the complex lipoprotein(a) KIV-2 VNTR.","authors":"Stephan Amstler, Gertraud Streiter, Cathrin Pfurtscheller, Lukas Forer, Silvia Di Maio, Hansi Weissensteiner, Bernhard Paulweber, Sebastian Schönherr, Florian Kronenberg, Stefan Coassin","doi":"10.1186/s13073-024-01391-8","DOIUrl":"10.1186/s13073-024-01391-8","url":null,"abstract":"<p><strong>Background: </strong>Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. The protein-coding LPA kringle IV type-2 (KIV-2) VNTR (5.6 kb per unit, 1-40 units per allele) is a medically highly relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies, and an intra-VNTR STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. Lp(a) concentrations vary widely between individuals and ancestries. Multiple variants and functional haplotypes in the LPA gene and especially in the KIV-2 VNTR strongly contribute to this variance.</p><p><strong>Methods: </strong>We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identifiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation, and copy number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples and low-level mixtures (0.5 to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract KIV-2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR within the KIV-2 VNTR.</p><p><strong>Results: </strong>UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity, and precision (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR unit. Human variant levels were highly correlated with next-generation sequencing (R<sup>2</sup> = 0.983) without bias across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40 quality. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agreement with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval of ddPCR. We then analyzed 62,679 intra-KIV-2 STR sequences and explored KIV-2 SNP haplotype patterns across five ancestries.</p><p><strong>Conclusions: </strong>UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome regions at scale.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"117"},"PeriodicalIF":10.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applicability of epigenetic age models to next-generation methylation arrays. 表观遗传年龄模型对下一代甲基化阵列的适用性。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-07 DOI: 10.1186/s13073-024-01387-4
Leonardo D Garma, Miguel Quintela-Fandino
{"title":"Applicability of epigenetic age models to next-generation methylation arrays.","authors":"Leonardo D Garma, Miguel Quintela-Fandino","doi":"10.1186/s13073-024-01387-4","DOIUrl":"10.1186/s13073-024-01387-4","url":null,"abstract":"<p><strong>Background: </strong>Epigenetic clocks are mathematical models used to estimate epigenetic age based on DNA methylation at specific CpG sites. As new methylation microarrays are developed and older models discontinued, existing epigenetic clocks might become obsolete. Here, we explored the effects of the changes introduced in the new EPICv2 DNA methylation array on existing epigenetic clocks.</p><p><strong>Methods: </strong>We tested the performance of four epigenetic clocks on the probeset of the EPICv2 array using a dataset of 10,835 samples. We developed a new epigenetic age prediction model compatible across the 450 k, EPICv1, and EPICv2 microarrays and validated it on 2095 samples. We estimated technical noise and intra-subject variation using two datasets with repeated sampling. We used data from (i) cancer survivors who had undergone different therapies, (ii) breast cancer patients and controls, and (iii) an exercise-based interventional study, to test the ability of our model to detect alterations in epigenetic age acceleration in response to theoretically antiaging interventions.</p><p><strong>Results: </strong>The results of the four epiclocks tested are significantly distorted by the EPICv2 probeset, causing an average difference of up to 25 years. Our new model produced highly accurate chronological age predictions, comparable to a state-of-the-art epiclock. The model reported the lowest epigenetic age acceleration in normal populations, as well as the lowest variation across technical replicates and repeated samples from the same subjects. Finally, our model reproduced previous results of increased epigenetic age acceleration in cancer patients and in survivors treated with radiation therapy, and no changes from exercise-based interventions.</p><p><strong>Conclusion: </strong>Existing epigenetic clocks require updates for full EPICv2 compatibility. Our new model translates the capabilities of state-of-the-art epigenetic clocks to the EPICv2 platform and is cross-compatible with older microarrays. The characterization of epigenetic age prediction variation provides useful metrics to contextualize the relevance of epigenetic age alterations. The analysis of data from subjects influenced by radiation, cancer, and exercise-based interventions shows that despite being good predictors of chronological age, neither a pathological state like breast cancer, a hazardous environmental factor (radiation), nor exercise (a beneficial intervention) caused significant changes in the values of the \"epigenetic age\" determined by these first-generation models.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"116"},"PeriodicalIF":10.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. 德国临床李斯特菌亚型的高密度基因组监测和风险分析。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-10-07 DOI: 10.1186/s13073-024-01389-2
Sven Halbedel, Sabrina Wamp, Raskit Lachmann, Alexandra Holzer, Ariane Pietzka, Werner Ruppitsch, Hendrik Wilking, Antje Flieger
{"title":"High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany.","authors":"Sven Halbedel, Sabrina Wamp, Raskit Lachmann, Alexandra Holzer, Ariane Pietzka, Werner Ruppitsch, Hendrik Wilking, Antje Flieger","doi":"10.1186/s13073-024-01389-2","DOIUrl":"https://doi.org/10.1186/s13073-024-01389-2","url":null,"abstract":"<p><strong>Background: </strong>Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages.</p><p><strong>Methods: </strong>We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties.</p><p><strong>Results: </strong>The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs.</p><p><strong>Conclusions: </strong>Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"115"},"PeriodicalIF":10.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism. 全基因组测序分析确定了导致自闭症表型多样性的家族模式性别差异。
IF 10.4 1区 生物学
Genome Medicine Pub Date : 2024-09-27 DOI: 10.1186/s13073-024-01385-6
Soo-Whee Kim, Hyeji Lee, Da Yea Song, Gang-Hee Lee, Jungeun Ji, Jung Woo Park, Jae Hyun Han, Jee Won Lee, Hee Jung Byun, Ji Hyun Son, Ye Rim Kim, Yoojeong Lee, Jaewon Kim, Ashish Jung, Junehawk Lee, Eunha Kim, So Hyun Kim, Jeong Ho Lee, F Kyle Satterstrom, Santhosh Girirajan, Anders D Børglum, Jakob Grove, Eunjoon Kim, Donna M Werling, Hee Jeong Yoo, Joon-Yong An
{"title":"Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism.","authors":"Soo-Whee Kim, Hyeji Lee, Da Yea Song, Gang-Hee Lee, Jungeun Ji, Jung Woo Park, Jae Hyun Han, Jee Won Lee, Hee Jung Byun, Ji Hyun Son, Ye Rim Kim, Yoojeong Lee, Jaewon Kim, Ashish Jung, Junehawk Lee, Eunha Kim, So Hyun Kim, Jeong Ho Lee, F Kyle Satterstrom, Santhosh Girirajan, Anders D Børglum, Jakob Grove, Eunjoon Kim, Donna M Werling, Hee Jeong Yoo, Joon-Yong An","doi":"10.1186/s13073-024-01385-6","DOIUrl":"https://doi.org/10.1186/s13073-024-01385-6","url":null,"abstract":"<p><strong>Background: </strong>Whole-genome sequencing (WGS) analyses have found higher genetic burden in autistic females compared to males, supporting higher liability threshold in females. However, genomic evidence of sex differences has been limited to European ancestry to date and little is known about how genetic variation leads to autism-related traits within families across sex.</p><p><strong>Methods: </strong>To address this gap, we present WGS data of Korean autism families (n = 2255) and a Korean general population sample (n = 2500), the largest WGS data of East Asian ancestry. We analyzed sex differences in genetic burden and compared with cohorts of European ancestry (n = 15,839). Further, with extensively collected family-wise Korean autism phenotype data (n = 3730), we investigated sex differences in phenotypic scores and gene-phenotype associations within family.</p><p><strong>Results: </strong>We observed robust female enrichment of de novo protein-truncating variants in autistic individuals across cohorts. However, sex differences in polygenic burden varied across cohorts and we found that the differential proportion of comorbid intellectual disability and severe autism symptoms mainly drove these variations. In siblings, males of autistic females exhibited the most severe social communication deficits. Female siblings exhibited lower phenotypic severity despite the higher polygenic burden than male siblings. Mothers also showed higher tolerance for polygenic burden than fathers, supporting higher liability threshold in females.</p><p><strong>Conclusions: </strong>Our findings indicate that genetic liability in autism is both sex- and phenotype-dependent, expanding the current understanding of autism's genetic complexity. Our work further suggests that family-based assessments of sex differences can help unravel underlying sex-differential liability in autism.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"114"},"PeriodicalIF":10.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信