Geocarto International最新文献

筛选
英文 中文
Spatiotemporal evolution analysis of OpenStreetMap buildings in the Yangtze River Delta of China based on Tree-like model 基于树状模型的中国长江三角洲 OpenStreetMap 建筑时空演化分析
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-07-01 DOI: 10.1080/10106049.2024.2364727
Rong Chen, Lingjia Liu, Xiaohui Ding, Wei Jiang
{"title":"Spatiotemporal evolution analysis of OpenStreetMap buildings in the Yangtze River Delta of China based on Tree-like model","authors":"Rong Chen, Lingjia Liu, Xiaohui Ding, Wei Jiang","doi":"10.1080/10106049.2024.2364727","DOIUrl":"https://doi.org/10.1080/10106049.2024.2364727","url":null,"abstract":"OpenStreetMap (OSM) is one of the most successful and well-known projects in the field of Volunteered Geographic Information (VGI). It has not only become supplement to basic mapping services and p...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"38 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral identification of travertine state in Huanglong by the PSO-BPNN method 利用 PSO-BPNN 方法进行黄龙洞石状态的高光谱识别
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-07-01 DOI: 10.1080/10106049.2024.2365886
Menghui Xu, Weihong Wang, Jialun Cai, Qunwei Dai, Jing Fan, Sicheng Li
{"title":"Hyperspectral identification of travertine state in Huanglong by the PSO-BPNN method","authors":"Menghui Xu, Weihong Wang, Jialun Cai, Qunwei Dai, Jing Fan, Sicheng Li","doi":"10.1080/10106049.2024.2365886","DOIUrl":"https://doi.org/10.1080/10106049.2024.2365886","url":null,"abstract":"The Huanglong Scenic and Historic Interest Area in China, a UNESCO World Heritage Site, is famous for its large-scale, diverse, intricately structured, and brightly colored surface travertine lands...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"2 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open-source data alternatives for regenerating urban road fine-grained features 再生城市道路细粒度特征的开源数据替代方案
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-07-01 DOI: 10.1080/10106049.2024.2364679
Kai Deng, Mingwei Zhao, Cancan Yang, Weitao Li
{"title":"Open-source data alternatives for regenerating urban road fine-grained features","authors":"Kai Deng, Mingwei Zhao, Cancan Yang, Weitao Li","doi":"10.1080/10106049.2024.2364679","DOIUrl":"https://doi.org/10.1080/10106049.2024.2364679","url":null,"abstract":"The extraction of urban road features provides indispensable support to numerous high-accurate applications such as autonomous driving and urban high-definition mapping. However, approaches mainly ...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"7 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of informative modelling and machine learning methods in landslide vulnerability evaluation – a case study of Wenchuan County, China 滑坡脆弱性评估中的信息建模和机器学习方法比较 - 中国汶川县案例研究
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-30 DOI: 10.1080/10106049.2024.2361714
Yutao Chen, Ning Li, Boju Zhao, Fucheng Xing, Han Xiang
{"title":"Comparison of informative modelling and machine learning methods in landslide vulnerability evaluation – a case study of Wenchuan County, China","authors":"Yutao Chen, Ning Li, Boju Zhao, Fucheng Xing, Han Xiang","doi":"10.1080/10106049.2024.2361714","DOIUrl":"https://doi.org/10.1080/10106049.2024.2361714","url":null,"abstract":"After the earthquake in Wenchuan in 2008, landslides have been happening frequently, causing a buildup of sediment in slopes and gullies. This creates a potential for mudslides and flash floods. It...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"30 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularizing building outlines extracted from remote sensing images by integrating multiple algorithms 通过整合多种算法对从遥感图像中提取的建筑物轮廓进行正则化处理
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-26 DOI: 10.1080/10106049.2024.2370322
Min Yang, Renwei Zou, Tinghua Ai, Xiongfeng Yan
{"title":"Regularizing building outlines extracted from remote sensing images by integrating multiple algorithms","authors":"Min Yang, Renwei Zou, Tinghua Ai, Xiongfeng Yan","doi":"10.1080/10106049.2024.2370322","DOIUrl":"https://doi.org/10.1080/10106049.2024.2370322","url":null,"abstract":"Extracting building from remote sensing images is crucial, but the extracted outlines still face issues such as point redundancy and lack of right-angle features, relying on further regularization....","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"78 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracting multilane roads from OpenStreetMap through graph convolutional neural network and road mesh relationship analysis 通过图卷积神经网络和道路网格关系分析从 OpenStreetMap 中提取多车道道路
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-24 DOI: 10.1080/10106049.2024.2364682
Andong Wang, Fang Wu, Xianyong Gong, Renjian Zhai, Yue Qiu, Yuyang Qi
{"title":"Extracting multilane roads from OpenStreetMap through graph convolutional neural network and road mesh relationship analysis","authors":"Andong Wang, Fang Wu, Xianyong Gong, Renjian Zhai, Yue Qiu, Yuyang Qi","doi":"10.1080/10106049.2024.2364682","DOIUrl":"https://doi.org/10.1080/10106049.2024.2364682","url":null,"abstract":"Multilane roads in vector data are comprised of parallel line features that represent the same road. The extraction of these features is crucial for updating maps and cartographic generalization. T...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"52 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring land subsidence through improved CAESAR algorithm in time-series InSAR processing 在时间序列 InSAR 处理中通过改进的 CAESAR 算法监测地面沉降
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-24 DOI: 10.1080/10106049.2024.2364689
Qian He, Huan He, Kangming Song, Jiawei Chen
{"title":"Monitoring land subsidence through improved CAESAR algorithm in time-series InSAR processing","authors":"Qian He, Huan He, Kangming Song, Jiawei Chen","doi":"10.1080/10106049.2024.2364689","DOIUrl":"https://doi.org/10.1080/10106049.2024.2364689","url":null,"abstract":"Time-series SAR interferometry (InSAR) combining permanent scatterer and distributed scatterer (DS), has been strongly developed in subsidence monitoring. It is known that the Component extrAction ...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"2 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of aboveground biomass from spectral and textural characteristics of paddy crop using UAV-multispectral images and machine learning techniques 利用无人机多光谱图像和机器学习技术,根据水稻作物的光谱和纹理特征估算地上生物量
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-22 DOI: 10.1080/10106049.2024.2364725
Sudarsan Biswal, Navneet Pathak, Chandranath Chatterjee, Damodhara Rao Mailapalli
{"title":"Estimation of aboveground biomass from spectral and textural characteristics of paddy crop using UAV-multispectral images and machine learning techniques","authors":"Sudarsan Biswal, Navneet Pathak, Chandranath Chatterjee, Damodhara Rao Mailapalli","doi":"10.1080/10106049.2024.2364725","DOIUrl":"https://doi.org/10.1080/10106049.2024.2364725","url":null,"abstract":"Multispectral (MS) images offer essential spectral information for monitoring paddy crops’ Aboveground-biomass (AGB), but efficiency decreases due to background materials and high canopy biomass. T...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"46 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretation of Bayesian-optimized deep learning models for enhancing soil erosion susceptibility prediction and management: a case study of Eastern India 解读贝叶斯优化深度学习模型,加强水土流失易发性预测和管理:印度东部案例研究
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-19 DOI: 10.1080/10106049.2024.2367611
Meshel Alkahtani, Javed Mallick, Saeed Alqadhi, Md Nawaj Sarif, Mohamed Fatahalla Mohamed Ahmed, Hazem Ghassan Abdo
{"title":"Interpretation of Bayesian-optimized deep learning models for enhancing soil erosion susceptibility prediction and management: a case study of Eastern India","authors":"Meshel Alkahtani, Javed Mallick, Saeed Alqadhi, Md Nawaj Sarif, Mohamed Fatahalla Mohamed Ahmed, Hazem Ghassan Abdo","doi":"10.1080/10106049.2024.2367611","DOIUrl":"https://doi.org/10.1080/10106049.2024.2367611","url":null,"abstract":"Soil erosion poses a significant threat to sustainable land management and agricultural productivity. Addressing this issue requires advanced predictive models that can accurately identify areas at...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"47 3 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning building groups at multiple scales based on image segmentation 基于图像分割的多尺度建筑群划分
IF 3.8 4区 地球科学
Geocarto International Pub Date : 2024-06-18 DOI: 10.1080/10106049.2024.2366520
Xianjin He, Puliang Lyu
{"title":"Partitioning building groups at multiple scales based on image segmentation","authors":"Xianjin He, Puliang Lyu","doi":"10.1080/10106049.2024.2366520","DOIUrl":"https://doi.org/10.1080/10106049.2024.2366520","url":null,"abstract":"The partitioning of building groups is a prerequisite for map generalization. Existing methods center on the spatial relationships between individual buildings, neglecting the interrelations among ...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"56 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信