L. De Gianni, G. Ciraolo, G. Giruzzi, G. Falchetto, N. Rivals, K. Gałązka, L. Balbinot, N. Varadarajan, S. Sureshkumar, J. F. Artaud, H. Bufferand, R. Düll, A. Gallo, P. Ghendrih, V. Quadri, G. Rubino, P. Tamain
{"title":"Core and edge modeling of JT-60SA H-mode highly radiative scenarios using SOLEDGE3X–EIRENE and METIS codes","authors":"L. De Gianni, G. Ciraolo, G. Giruzzi, G. Falchetto, N. Rivals, K. Gałązka, L. Balbinot, N. Varadarajan, S. Sureshkumar, J. F. Artaud, H. Bufferand, R. Düll, A. Gallo, P. Ghendrih, V. Quadri, G. Rubino, P. Tamain","doi":"10.3389/fphy.2024.1422286","DOIUrl":"https://doi.org/10.3389/fphy.2024.1422286","url":null,"abstract":"In its first phase of exploitation, JT-60SA will be equipped with an inertially cooled divertor, which can sustain heat loads of 10 MW/m<jats:sup>2</jats:sup> on the targets for a few seconds, which is much shorter than the intended discharge duration. Therefore, in order to maximize the duration of discharges, it is crucial to develop operational scenarios with a high radiated fraction in the plasma edge region without unacceptably compromising the scenario performance. In this study, the core and edge conditions of unseeded and neon-seeded deuterium H-mode scenarios in JT-60SA were investigated using METIS and SOLEDGE3X–EIRENE codes. The aim was to determine whether, and under which operational conditions, it would be possible to achieve heat loads at the targets significantly lower than 10 MW/m<jats:sup>2</jats:sup> and potentially establish a divertor-detached regime while keeping favorable plasma core conditions. In first analysis, an investigation of the edge parameter space of unseeded scenarios was carried out. Simulations at an intermediate edge power of 15 MW indicate that, without seeded impurities, the heat loads at the targets are higher than 10 MW/m<jats:sup>2</jats:sup> in attached cases, and achieving detachment is challenging, requiring upstream electron densities at least above 4 × 10<jats:sup>19</jats:sup> m<jats:sup>−3</jats:sup>. This points toward the need for impurity injection during the first period of exploitation of the machine. Therefore, neon seeding simulations were carried out, performing a seeding rate scan and an injected power scan while keeping the upstream electron density at the separatrix at 3 × 10<jats:sup>19</jats:sup> m<jats:sup>−3</jats:sup>. They show that at 15 MW of power injected into the edge plasma, the inner target is easily detached and presents low heat loads when neon is injected. However, at the outer target, the heat fluxes are not lowered below 10 MW/m<jats:sup>2</jats:sup>, even when the power losses in the edge plasma are equal to 50% of the power crossing the separatrix. Therefore, the tokamak will probably need to be operated in a deep detached regime in its first phase of exploitation for discharges longer than a few seconds. In the framework of core–edge integrated modeling, using METIS, the power radiated in the core was computed for the most interesting cases.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the calculation of irregular solutions of the Schrödinger equation for non-spherical potentials with applications to metallic alloys","authors":"Rudolf Zeller","doi":"10.3389/fphy.2024.1393130","DOIUrl":"https://doi.org/10.3389/fphy.2024.1393130","url":null,"abstract":"The irregular solutions of the stationary Schrödinger equation are important for the fundamental formal development of scattering theory. They are also necessary for the analytical properties of the Green function, which in practice can greatly speed up calculations. Nevertheless, they are seldom considered in numerical treatments because of their divergent behavior at origin. This divergence demands high numerical precision that is difficult to achieve, particularly for non-spherical potentials which lead to different divergence rates in the coupled angular momentum channels. Based on an unconventional treatment of boundary conditions, an integral-equation method is here developed which is capable of dealing with this problem. The available precision is illustrated by electron-density calculations for NiTi in its monoclinic B19’ structure.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jawad Mirza, Firdos Kanwal, Umair Ahmad Salaria, Salman Ghafoor, Imran Aziz, Ahmad Atieh, Ahmad Almogren, Anwar Ul Haq, Benish Kanwal
{"title":"Underwater temperature and pressure monitoring for deep-sea SCUBA divers using optical techniques","authors":"Jawad Mirza, Firdos Kanwal, Umair Ahmad Salaria, Salman Ghafoor, Imran Aziz, Ahmad Atieh, Ahmad Almogren, Anwar Ul Haq, Benish Kanwal","doi":"10.3389/fphy.2024.1417293","DOIUrl":"https://doi.org/10.3389/fphy.2024.1417293","url":null,"abstract":"The safety of SCUBA divers remains at high risk in deep-sea owing to multiple factors such as dangerous surrounding, rely upon technical equipment necessary for life support, decreased underwater navigation, and communication infrastructure. Gradual decrease and increase in water temperature and pressure corresponding to depth are among the most common problems that cause most of the fatalities in deep-sea diving. Therefore, different gadgets for accurate measurement of vital parameters, reliable navigation, and seamless communication are of prime importance. In this paper, we propose an all-optical technique for local and remote monitoring of underwater temperature and pressure for deep-sea SCUBA divers based on fiber Bragg grating (FBG) sensors and underwater optical communication-single mode fiber (UWOC-SMF) integrated transmission system. The proposed technique is implemented using two FBG temperature and pressure sensors fixed over diver’s suit and UWOC-SMF integrated transmission system for simultaneous local and remote monitoring of underwater temperature and pressure. Remote monitoring of underwater temperature and pressure is achieved at ship station through a remotely operated underwater vehicle (ROV) and UWOC-SMF integrated transmission system by means of shifts in the original Bragg wavelengths of sensors due to temperature and pressure variations. The performance of the sensors is analyzed for pressure and temperature in the range of 0 to 6.4 MPa (<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mo>≈</mml:mo></mml:math></jats:inline-formula>0 to 655 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">m</mml:mi><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi>O</mml:mi></mml:math></jats:inline-formula>) and 40 to −2<jats:italic>°C</jats:italic>, respectively corresponding to different depths. The results show that the proposed technique can work well in the deep ocean over a range of pressures and temperatures of 0–7 MPa and 40 to −2<jats:italic>°C</jats:italic> while achieving a temperature sensitivity of 4.3 p.m./<jats:italic>°</jats:italic>C and a pressure sensitivity of 30.5 p.m./MPa. Clear spectra of reflected signals from FBG sensors at ship station are achieved after signal transmission over UWOC-SMF hybrid link.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced sensing response of the three dimensional MoS2 microstructure for NO2 gas detection at room temperature","authors":"Hongdao Cheng, Sihuan Huang, Zengshan Xing, Lu Yang, Jianhui Yu, Yongchun Zhong","doi":"10.3389/fphy.2024.1446416","DOIUrl":"https://doi.org/10.3389/fphy.2024.1446416","url":null,"abstract":"As a promising sensing material, Molybdenum disulfide (MoS<jats:sub>2</jats:sub>) nanosheets is being increasingly studied for Nitrogen dioxide (NO<jats:sub>2</jats:sub>) gas sensing. However, the MoS<jats:sub>2</jats:sub> nanosheets is prone to the stacking effect that compromises the sensing performances. Here, the stacking effect is mitigated by engineering MoS<jats:sub>2</jats:sub> nanosheets into a three dimensional (3D) network microstructure, which was fabricated by method of electrostatically self-assembling of MoS<jats:sub>2</jats:sub>/SiO<jats:sub>2</jats:sub> microspheres. The fabricated sensor based on 3D MoS<jats:sub>2</jats:sub> network observed a significantly improved response of 15% to 12.3 ppm NO<jats:sub>2</jats:sub>, which is a 75-fold increase compared to the control sensor with pure MoS<jats:sub>2</jats:sub> nanosheets. In addition, the sensitivity of the sensor with 3D MoS<jats:sub>2</jats:sub> network was 6.15 times larger than that of the control sensor with pure MoS<jats:sub>2</jats:sub> nanosheets. The detection limit of our sensor was 0.297 ppm, lower than most of reported MoS<jats:sub>2</jats:sub>-based NO<jats:sub>2</jats:sub> sensors. The enhanced sensitivity and dynamic response stem from the improved interaction between NO<jats:sub>2</jats:sub> molecules and MoS<jats:sub>2</jats:sub> network, thanks to its increased surface area per footprint of MoS<jats:sub>2</jats:sub> nanosheets compared to pure 2D MoS<jats:sub>2</jats:sub> film (single- or few-layer). This work presents a new approach to enhancing the performance of gas sensors based on 2D materials.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tito Körner, Stefan Wampl, Lorenz Kiss, Gunpreet Oberoi, Ewald Unger, Wolfgang Birkfellner, Albrecht I. Schmid
{"title":"A modular torso phantom featuring a pneumatic stepper and flow for MR sequence development","authors":"Tito Körner, Stefan Wampl, Lorenz Kiss, Gunpreet Oberoi, Ewald Unger, Wolfgang Birkfellner, Albrecht I. Schmid","doi":"10.3389/fphy.2024.1369574","DOIUrl":"https://doi.org/10.3389/fphy.2024.1369574","url":null,"abstract":"IntroductionPhantoms mimicking tissue motion have become a valuable tool for quality control in various fields of medical physics including lung phantoms for image-guided radiotherapy and functional imaging in nuclear medicine or magnetic resonance imaging (MRI) in the body. In MRI, precise kinematic models are more difficult to realize owing to the requirements of MR-compatibility. Pneumatic stepper motors built entirely of non-conducting materials can be safely used in an MR environment, with pressurized air supply and switching residing outside the magnet room.MethodsIn this research, a torso phantom was built adopting a 3D-printed linear stepper drive for use with high-field MR scanners. It was possible to simulate respiratory motion of a 3D-printed left ventricle phantom using the stepper.Results and discussionPrecise and accurate motion for a time of 15 min over a range of 8 cm were achieved with speeds up to 5.5 mm/s when the stepper was loaded with the left ventricle phantom. It was shown that the motor is an effective tool for quality control in multi-modal medical imaging.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trang Le, Yasuhiro Suzuki, Hiroaki Ohtani, Hiroki Hasegawa, Toseo Moritaka
{"title":"Frontiers | Poloidally asymmetric potential formation on plasma boundary in axisymmetric magnetic field","authors":"Trang Le, Yasuhiro Suzuki, Hiroaki Ohtani, Hiroki Hasegawa, Toseo Moritaka","doi":"10.3389/fphy.2024.1398172","DOIUrl":"https://doi.org/10.3389/fphy.2024.1398172","url":null,"abstract":"To study the symmetry of electrical potential, we model plasma transport in the edge region of a toroidal device with two spatial dimensions (2D) and three coordinates for velocities (3V) using a Particle-In-Cell (PIC) code. A two-dimensional magnetic field is applied, including poloidal and toroidal components, which are periodic in the poloidal direction. We discover relationships between the magnetic gradient drift and potential formation using PIC simulation, which has not been captured in other numerical models. We find that the inverse aspect ratio influences the asymmetry of the potential in an axisymmetric magnetic configuration.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum: Anomalous Hall effects in chiral superconductors","authors":"","doi":"10.3389/fphy.2024.1456426","DOIUrl":"https://doi.org/10.3389/fphy.2024.1456426","url":null,"abstract":"","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141804872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arturo Mendoza-Galván, Roger Magnusson, Nicklas Jansson, Hans Arwin, Kenneth Järrendahl
{"title":"Dual chiral structures in the cuticle of Protaetia mirifica analyzed with Mueller matrix spectroscopic ellipsometry","authors":"Arturo Mendoza-Galván, Roger Magnusson, Nicklas Jansson, Hans Arwin, Kenneth Järrendahl","doi":"10.3389/fphy.2024.1444297","DOIUrl":"https://doi.org/10.3389/fphy.2024.1444297","url":null,"abstract":"Many species of beetles from the family Scarabaeidae reflect light with near-circular polarization. In some cases, spectral narrow-band polarization phenomena result in a distinct color with a metallic shine. In other cases, broad-band features are seen, and these beetles have a silvery or goldish appearance. These features in the cuticles originate from helicoidal structures, so-called circular Bragg structures and also referred to as Bouligand structures. In this communication, <jats:italic>Protaetia mirifica,</jats:italic> exhibiting near-circular polarization properties in dual spectral regions, centered approximately at the wavelengths of 474 and 770 nm, is investigated in considerable detail using Mueller matrix spectroscopic ellipsometry (MMSE). From interference oscillations in the MMSE spectra, the pitch profile of the helicoidal structures in the beetle cuticle is extracted and further used in electromagnetic modeling of the cuticle structure, including the determination of epicuticle and exocuticle thicknesses (280 nm and 8.1 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>μ</mml:mi><mml:mi mathvariant=\"normal\">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>, respectively) and anisotropic optical properties. These findings are confirmed by scanning electron microscopy. The analysis shows that the uppermost <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mn>4</mml:mn><mml:mtext> </mml:mtext><mml:mi>μ</mml:mi><mml:mi mathvariant=\"normal\">m</mml:mi></mml:mrow></mml:math></jats:inline-formula> of the cuticle has a nearly constant pitch of 310 nm, which abruptly jumps to 440 nm and then gradually increases up to 575 nm. Sum decompositions of MMSE spectra reveal that the beetle cuticle reflects like a circular polarizer or like a dielectric mirror, depending on the spectral region.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-position vector curves in Galilean 4-space","authors":"Ayman Elsharkawy, Noha Elsharkawy","doi":"10.3389/fphy.2024.1400730","DOIUrl":"https://doi.org/10.3389/fphy.2024.1400730","url":null,"abstract":"The Frenet frame is not suitable for describing the behavior of the curve in the Galilean space since it is not defined everywhere. In this study, an alternative frame, the so-called quasi-frame, is investigated in Galilean 4-space. Furthermore, the quasi-formulas in Galilean 4-space are deduced and quasi-curvatures are obtained in terms of the quasi-frame and its derivatives. Quasi-rectifying, quasi-normal, and quasi-osculating curves are studied in Galilean 4-space. We prove that there is no quasi-normal and accordingly normal curve in Galilean 4-space.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low gain avalanche diodes for photon science applications","authors":"Matteo Centis Vignali, Giovanni Paternoster","doi":"10.3389/fphy.2024.1359179","DOIUrl":"https://doi.org/10.3389/fphy.2024.1359179","url":null,"abstract":"Low Gain Avalanche Diodes (LGADs) are silicon sensors designed to achieve an internal gain in the order of 10 through the impact ionization process. The development of LGADs was pushed forward by their application in High Energy Physics (HEP) experiments, where they will be employed to provide measurements of the time of arrival of minimum ionizing particles with a resolution of around 30 ps. The initial technological implementation of the sensors constrains their minimum channel size to be larger than 1 mm<jats:sup>2</jats:sup>, in order to reduce inefficiencies due to the segmentation of the gain structure. The gain of the sensors is kept in the order of 10 to limit the sensor shot noise and their power consumption. In photon science, the gain provided by the sensor can boost the signal-to-noise ratio of the detector system, effectively reducing the x-ray energy threshold of photon counting detectors and the minimum x-ray energy where single photon resolution is achieved in charge integrating detectors. This can improve the hybrid pixel and strip detectors for soft and tender x-rays by simply changing the sensor element of the detector system. Photon science applications in the soft and tender energy range require improvements over the LGADs developed for HEP, in particular the presence of a thin entrance window to provide a satisfactory quantum efficiency and channel size with a pitch of less than 100 <jats:italic>μ</jats:italic>m. In this review, the fundamental aspects of the LGAD technology are presented, discussing also the ongoing and future developments that are of interest for photon science applications.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}