Kevser Şimşek, Nisa Özge Önal Tuğrul, K. Karaçuha, Vasil Tabatadze, E. Karaçuha
{"title":"Modeling and Predicting Passenger Load Factor in Air Transportation: A Deep Assessment Methodology with Fractional Calculus Approach Utilizing Reservation Data","authors":"Kevser Şimşek, Nisa Özge Önal Tuğrul, K. Karaçuha, Vasil Tabatadze, E. Karaçuha","doi":"10.3390/fractalfract8040214","DOIUrl":"https://doi.org/10.3390/fractalfract8040214","url":null,"abstract":"This study addresses the challenge of predicting the passenger load factor (PLF) in air transportation to optimize capacity management and revenue maximization. Leveraging historical reservation data from 19 Turkish Airlines market routes and sample flights, we propose a novel approach combining deep assessment methodology (DAM) with fractional calculus theory. By modeling the relationship between PLF and the number of days remaining until a flight, our method yields minimal errors compared to traditional techniques. Through a continuous curve constructed using the least-squares approach, we enable the anticipation of future flight values. Our analysis demonstrates that the DAM model with a first-order derivative outperforms linear techniques and the Fractional Model-3 in both modeling capabilities and prediction accuracy. The proposed approach offers a data-driven solution for efficiently managing air transport capacity, with implications for revenue optimization. Specifically, our modeling findings indicate that the DAM wd model improves prediction accuracy by approximately 0.67 times compared to the DAM model, surpassing the fractional model and regression analysis. For the DAM wd modeling method, the lowest average mean absolute percentage error (AMAPE) value achieved is 0.571, showcasing its effectiveness in forecasting flight outcomes.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140732983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of Pipeline Leaks Using Fractal Analysis of Acoustic Signals","authors":"Ayrat Zagretdinov, Shamil Ziganshin, Eugenia Izmailova, Yuri Vankov, Ilya Klyukin, Roman Alexandrov","doi":"10.3390/fractalfract8040213","DOIUrl":"https://doi.org/10.3390/fractalfract8040213","url":null,"abstract":"In this paper, the possibility of using monofractal and multifractal analysis of acoustic signals of pipelines to detect leaks is considered. An experimental stand has been created to study the fractal characteristics of acoustic signals of pipelines with “slit” type defects. During the experiments, defects of the “slit” type pipeline with dimensions of 2 mm, 8 mm, and 20 mm were modeled. Detrended fluctuation analysis (DFA) and the multifractal detrended fluctuation analysis (MF-DFA) were used. As a result of the experimental studies, it was found that the occurrence of leakage leads to the occurrence of anticorrelated vibrations in a pipeline with multifractal properties. The analyses of acoustic signals by DFA and MF-DFA methods make it possible to reliably determine the leakage. The Hurst exponent and the width of the multifractal spectrum can serve as indicators of the occurrence of leaks in pipelines.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140736706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Manuel Barrios-Sánchez, Roberto Baeza-Serrato, L. Martínez-Jiménez
{"title":"Fractional Calculus to Analyze Efficiency Behavior in a Balancing Loop in a System Dynamics Environment","authors":"Jorge Manuel Barrios-Sánchez, Roberto Baeza-Serrato, L. Martínez-Jiménez","doi":"10.3390/fractalfract8040212","DOIUrl":"https://doi.org/10.3390/fractalfract8040212","url":null,"abstract":"This research project focuses on developing a mathematical model that allows us to understand the behavior of the balancing loops in system dynamics in greater detail and precision. Currently, simulations give us an understanding of the behavior of these loops, but under the premise of an ideal scenario. In practice, however, accurate models often operate with varying efficiencies due to various irregularities and particularities. This discrepancy is the primary motivation behind our research proposal, which seeks to provide a more realistic understanding of the behavior of the loops, including their different levels of efficiency. To achieve this goal, we propose the introduction of fractional calculus in system dynamics models, focusing specifically on the balancing loops. This innovative approach offers a new perspective on the state of the art, offering new possibilities for understanding and optimizing complex systems.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators","authors":"A. Samadi, Sotiris K. Ntouyas, J. Tariboon","doi":"10.3390/fractalfract8040211","DOIUrl":"https://doi.org/10.3390/fractalfract8040211","url":null,"abstract":"This paper deals with a nonlocal fractional coupled system of (k,ψ)-Hilfer fractional differential equations, which involve, in boundary conditions, (k,ψ)-Hilfer fractional derivatives and (k,ψ)-Riemann–Liouville fractional integrals. The existence and uniqueness of solutions are established for the considered coupled system by using standard tools from fixed point theory. More precisely, Banach and Krasnosel’skiĭ’s fixed-point theorems are used, along with Leray–Schauder alternative. The obtained results are illustrated by constructed numerical examples.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140744433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracting the Ultimate New Soliton Solutions of Some Nonlinear Time Fractional PDEs via the Conformable Fractional Derivative","authors":"Md Ashik Iqbal, A. Ganie, M. M. Miah, M. S. Osman","doi":"10.3390/fractalfract8040210","DOIUrl":"https://doi.org/10.3390/fractalfract8040210","url":null,"abstract":"Nonlinear fractional-order differential equations have an important role in various branches of applied science and fractional engineering. This research paper shows the practical application of three such fractional mathematical models, which are the time-fractional Klein–Gordon equation (KGE), the time-fractional Sharma–Tasso–Olever equation (STOE), and the time-fractional Clannish Random Walker’s Parabolic equation (CRWPE). These models were investigated by using an expansion method for extracting new soliton solutions. Two types of results were found: one was trigonometric and the other one was an exponential form. For a profound explanation of the physical phenomena of the studied fractional models, some results were graphed in 2D, 3D, and contour plots by imposing the distinctive results for some parameters under the oblige conditions. From the numerical investigation, it was noticed that the obtained results referred smooth kink-shaped soliton, ant-kink-shaped soliton, bright kink-shaped soliton, singular periodic solution, and multiple singular periodic solutions. The results also showed that the amplitude of the wave augmented with the pulsation in time, which derived the order of time fractional coefficient, remarkably enhanced the wave propagation, and influenced the nonlinearity impacts.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractal Characteristics of Natural Fiber-Reinforced Soil in Arid Climate Due to Cracking","authors":"Binbin Yang, Lichuang Jin","doi":"10.3390/fractalfract8040209","DOIUrl":"https://doi.org/10.3390/fractalfract8040209","url":null,"abstract":"Fractal geometry is a geometry that focuses on irregular geometric forms and can quantitatively describe rough and uneven surfaces and interfaces. As the main material for making natural fiber geotextile, rice straw fiber can reduce the direct impact of rainfall on soil and reduce the intensity of hydraulic erosion. This study investigates whether the use of rice straw fiber as an additive to reinforce arid soil can inhibit moisture evaporation and prevent cracking. Samples with different fiber contents added (0%, 1%, 2%, and 4%) are placed in an environmental chamber to simulate the effects of an arid climatic condition and control the temperature and humidity levels. The cracking process of the samples is recorded by using a digital camera, and the parameters of the evaporation and cracking processes are quantitatively examined through digital image processing. The results show that all of the samples with fiber have a higher residual water content and can retain 31.4%, 58.5%, and 101.9% more water than without the fibers, respectively. Furthermore, both the primary and secondary cracks as well as crack networks are inhibited in samples with a higher fiber content, that is, 2% or 4% fiber contents. The samples reinforced with fiber also have a smaller crack ratio. Compared with the samples without straw fiber, the final crack ratio of the samples with 1%, 2%, and 4% fiber is reduced by 8.05%, 24.09%, and 35.01% respectively. Finally, the final fractal dimensions of the cracks in samples with fiber contents are also reduced by 0.54%, 5.50%, and 6.40% for the samples with 1%, 2%, and 4% fiber, respectively. The addition of natural fiber as an additive to reduce evaporative cracking in soil can: (1) reduce the soil porosity; (2) enhance the binding force between the soil particles; and (3) block the hydrophobic channels. Therefore, the addition of rice straw fiber to soil can effectively reduce soil evaporation and inhibit soil cracking.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutum Zico Meetei, Shahbaz Zafar, Abdullah A. Zaagan, Ali M. Mahnashi, Muhammad Idrees
{"title":"Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling","authors":"Mutum Zico Meetei, Shahbaz Zafar, Abdullah A. Zaagan, Ali M. Mahnashi, Muhammad Idrees","doi":"10.3390/fractalfract8040207","DOIUrl":"https://doi.org/10.3390/fractalfract8040207","url":null,"abstract":"This work presents a quantitative analysis of the transmission dynamics of dengue using the Caputo–Fabrizio fractional-order derivative. It presents an extensive framework for modeling a dengue epidemic, including the various stages of infection and encompassing a wide range of transmission pathways. The proposed model is subjected to a rigorous qualitative study, including the determination of a non-negative solution, the assessment of the basic reproduction number, and an evaluation of local stability. Numerical solutions are obtained using the Newton method. The fractional-order operator, developed using the Caputo–Fabrizio approach, provides a refined perspective on the transmission dynamics of dengue. This study contributes to a deeper understanding of the disease’s transmission mechanisms, considering both fractional-order dynamics and diverse transmission routes, thus offering insights for enhanced disease management and control.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nouf Abdulrahman Alqahtani, S. Qaisar, Arslan Munir, Muhammad Naeem, Hüseyin Budak
{"title":"Error Bounds for Fractional Integral Inequalities with Applications","authors":"Nouf Abdulrahman Alqahtani, S. Qaisar, Arslan Munir, Muhammad Naeem, Hüseyin Budak","doi":"10.3390/fractalfract8040208","DOIUrl":"https://doi.org/10.3390/fractalfract8040208","url":null,"abstract":"Fractional calculus has been a concept used to obtain new variants of some well-known integral inequalities. In this study, our main goal is to establish the new fractional Hermite–Hadamard, and Simpson’s type estimates by employing a differentiable function. Furthermore, a novel class of fractional integral related to prominent fractional operator (Caputo–Fabrizio) for differentiable convex functions of first order is proven. Then, taking this equality into account as an auxiliary result, some new estimation of the Hermite–Hadamard and Simpson’s type inequalities as generalization is presented. Moreover, few inequalities for concave function are obtained as well. It is observed that newly established outcomes are the extension of comparable inequalities existing in the literature. Additionally, we discuss the applications to special means, matrix inequalities, and the q-digamma function.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140753241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fadile Sen, A. Kircay, Buket Sonbas Cobb, A. Akgul
{"title":"MO-CCCII-Based Single-Input Multi-Output (SIMO) Current-Mode Fractional-Order Universal and Shelving Filter","authors":"Fadile Sen, A. Kircay, Buket Sonbas Cobb, A. Akgul","doi":"10.3390/fractalfract8040181","DOIUrl":"https://doi.org/10.3390/fractalfract8040181","url":null,"abstract":"This study introduces an innovative filter topology capable of providing simultaneous positive and negative gain outputs for one-fractional order LP, with high-pass, all-pass, and fractional-order shelving filter responses. The circuit, utilizing multi-output second-generation current-controlled conveyors, stands out as the first to deliver ten outputs, incorporating both integer and fractional-order filter responses, without requiring additional components. Its current-mode design simplifies the process, employing minimal active and grounded passive elements, making it appropriate for low-voltage/low-power applications. The filter utilizes fifth-order Oustaloup approximation and Foster type-I RC networks for fractional-order capacitors, providing enhanced control over the transition slope. PSpice simulations confirmed a 1 kHz cut-off, showcasing low power consumption, minimal noise, and a wide dynamic range, positioning the filter as suitable for sensors, control, and acoustic applications.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140214392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asifa Tassaddiq, R. Srivastava, Rabab Alharbi, R. Kasmani, Sania Qureshi
{"title":"New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators","authors":"Asifa Tassaddiq, R. Srivastava, Rabab Alharbi, R. Kasmani, Sania Qureshi","doi":"10.3390/fractalfract8040180","DOIUrl":"https://doi.org/10.3390/fractalfract8040180","url":null,"abstract":"The role of fractional integral inequalities is vital in fractional calculus to develop new models and techniques in the most trending sciences. Taking motivation from this fact, we use multiple Erdélyi–Kober (M-E-K) fractional integral operators to establish Minkowski fractional inequalities. Several other new and novel fractional integral inequalities are also established. Compared to the existing results, these fractional integral inequalities are more general and substantial enough to create new and novel results. M-E-K fractional integral operators have been previously applied for other purposes but have never been applied to the subject of this paper. These operators generalize a popular class of fractional integrals; therefore, this approach will open an avenue for new research. The smart properties of these operators urge us to investigate more results using them.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140211906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}