Ahmed Z. Amin, Mohamed A. Abdelkawy, Emad Solouma, Ibrahim Al-Dayel
{"title":"求解非线性分布阶分数阶Bagley-Torvik微分方程的谱配法","authors":"Ahmed Z. Amin, Mohamed A. Abdelkawy, Emad Solouma, Ibrahim Al-Dayel","doi":"10.3390/fractalfract7110780","DOIUrl":null,"url":null,"abstract":"One of the issues in numerical solution analysis is the non-linear distributed-order fractional Bagley–Torvik differential equation (DO-FBTE) with boundary and initial conditions. We solve the problem by proposing a numerical solution based on the shifted Legendre Gauss–Lobatto (SL-GL) collocation technique. The solution of the DO-FBTE is approximated by a truncated series of shifted Legendre polynomials, and the SL-GL collocation points are employed as interpolation nodes. At the SL-GL quadrature points, the residuals are computed. The DO-FBTE is transformed into a system of algebraic equations that can be solved using any conventional method. A set of numerical examples is used to verify the proposed scheme’s accuracy and compare it to existing findings.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"47 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectral Collocation Method for Solving the Non-Linear Distributed-Order Fractional Bagley–Torvik Differential Equation\",\"authors\":\"Ahmed Z. Amin, Mohamed A. Abdelkawy, Emad Solouma, Ibrahim Al-Dayel\",\"doi\":\"10.3390/fractalfract7110780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the issues in numerical solution analysis is the non-linear distributed-order fractional Bagley–Torvik differential equation (DO-FBTE) with boundary and initial conditions. We solve the problem by proposing a numerical solution based on the shifted Legendre Gauss–Lobatto (SL-GL) collocation technique. The solution of the DO-FBTE is approximated by a truncated series of shifted Legendre polynomials, and the SL-GL collocation points are employed as interpolation nodes. At the SL-GL quadrature points, the residuals are computed. The DO-FBTE is transformed into a system of algebraic equations that can be solved using any conventional method. A set of numerical examples is used to verify the proposed scheme’s accuracy and compare it to existing findings.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110780\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110780","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Spectral Collocation Method for Solving the Non-Linear Distributed-Order Fractional Bagley–Torvik Differential Equation
One of the issues in numerical solution analysis is the non-linear distributed-order fractional Bagley–Torvik differential equation (DO-FBTE) with boundary and initial conditions. We solve the problem by proposing a numerical solution based on the shifted Legendre Gauss–Lobatto (SL-GL) collocation technique. The solution of the DO-FBTE is approximated by a truncated series of shifted Legendre polynomials, and the SL-GL collocation points are employed as interpolation nodes. At the SL-GL quadrature points, the residuals are computed. The DO-FBTE is transformed into a system of algebraic equations that can be solved using any conventional method. A set of numerical examples is used to verify the proposed scheme’s accuracy and compare it to existing findings.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.