{"title":"Wnt5a/Ror2 promotes vascular smooth muscle cells proliferation via activating PKC.","authors":"Yaning Shi, Hongfang Li, Jia Gu, Yongzhen Gong, Xuejiao Xie, Duanfang Liao, Li Qin","doi":"10.5603/FHC.a2022.0026","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0026","url":null,"abstract":"<p><strong>Introduction: </strong>Abnormal proliferation of vascular smooth muscle cells (VSMCs) can cause various vascular diseases, such as atherosclerosis, restenosis, and pulmonary hypertension. However, the effect and underlying mechanism of Wnt5a on the proliferation of VSMCs remain unclear. Our study aimed to investigate whether Wnt5a/Ror2 promotes vascular smooth muscle cell proliferation via activating protein kinase C (PKC), thereby effectively alleviating vascular proliferative diseases.</p><p><strong>Material and methods: </strong>The proliferation of HA-VSMC cell line was evaluated by CCK-8, EdU, and Plate clone formation assays. The Wnt5a gene knockdown and overexpression were carried out by standard methods. The interaction between Wnt5a and Ror2 was explored by co-immunoprecipitation. Western blotting and immunofluorescence were used to determine the expression levels of key proteins in VSMCs.</p><p><strong>Results: </strong>The present study found that the expression of Wnt5a protein increased significantly in the proliferation of VSMCs stimulated by 10% serum in a time-dependent manner. Furthermore, the proliferative rate of VSMCs overexpressing Wnt5a was dramatically accelerated, whereas Wnt5a knockdown using siWnt5a reversed thisproliferative effect. Wnt5a up-regulated the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) by binding to it. Further studies indicated that Wnt5a induces the PKC expression in VSMCs and knockdown of Wnt5a or Ror2 could inhibit PKC phosphorylation.</p><p><strong>Conclusions: </strong>Wnt5a could effectively promote the proliferation of VSMCs, which might be related to the binding of Wnt5a and Ror2 to activate PKC.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40386246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Zhao, Xueying Shi, Changcheng Dong, Rui Liu, Lifu Su, Cuixia Cao
{"title":"5-fluorouracil suppresses stem cell-like properties by inhibiting p38 in pancreatic cancer cell line PANC-1.","authors":"Jin Zhao, Xueying Shi, Changcheng Dong, Rui Liu, Lifu Su, Cuixia Cao","doi":"10.5603/FHC.a2022.0004","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0004","url":null,"abstract":"<p><strong>Introduction: </strong>Suppressing the phenotype of cancer stem cells (CSCs) is a promising treatment strategy for cancer. P38 mitogen-activated protein kinases (MAPK, p38) play an important role in the occurrence, development, and stemness maintenance of tumors. The aim of the current study was to investigate the effect of p38 on the stemness maintenance of CSCs in pancreatic cancer cell line PANC-1.</p><p><strong>Material and methods: </strong>PANC-1 human pancreatic cancer cells were treated with 5-fluorouracil (5-FU) at 0.5 IC50, IC50, and 2 IC50 for 24 h. PANC-1 cells were treated for 24 h with 5-FU at 0.5IC50, IC50, and 2IC50 with or without VX-702, p38 phosphorylation inhibitor. Cells were resuspended in DMEM supplemented with 20 ng/ml epidermal growth factor, 2% B27, 5 mg/ml insulin, 20 g/ml basic fibroblast growth factor, and 10 μg/ml transferrin. Cells were seeded in ultra-low adhesion 6-well dishes to observe tumor spheroidization. The expression of CDK2, cyclin B1, cyclin D1, OCT4, SOX2, Nanog, and p38 was measured by Western blot. The mRNA expression of p38, OCT4, Nanog, and SOX2 was measured by RT-PCR. Flow cytometry was performed to evaluate the cell cycle, apoptosis, and proportion of CD44+CD133+ PANC-1 cells.</p><p><strong>Results: </strong>5-FU decreased cell viability and increased apoptosis. 5-FU suppressed the stemness maintenance of CSCs in PANC-1 cells, as demonstrated by the inhibition of tumorsphere formation, the decrease in CD44+CD133+ cells' fraction, and downregulation of OCT4, Nanog, and SOX2 expression. In addition, 5-FU inhibited the phosphorylation of p38 in PANC-1 cells. The phosphorylation of p38 was subsequently suppressed by VX-702, p38 mitogen-activated protein kinase inhibitor, which exhibited similar effects as those of 5-FU treatment. The effect of VX-702 on PANC-1 cells was further enhanced by 5-FU treatment. Thus, p38 inhibitor decreased the viability and increased the apoptosis of PANC-1 cells. P38 inhibitor suppressed the stemness maintenance of CSCs in PANC-1 cells, as demonstrated by the inhibition of tumorsphere formation, the decrease in CD44+CD133+ cells, and the downregulation of OCT4, Nanog, and SOX2 expression.</p><p><strong>Conclusions: </strong>These findings indicate that the inhibition of p38 phosphorylation suppresses the stemness maintenance and 5-FU resistance of PANC-1 cells, providing a potential therapeutic target for the prevention and treatment of pancreatic cancer.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39575535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Astragaloside IV - mediated endothelial progenitor cell exosomes promote autophagy and inhibit apoptosis in hyperglycemic damaged endothelial cells via miR-21/PTEN axis.","authors":"Wu Xiong, Xin-Ling Huang, Xiao-Liang Wang, Hong-Wei Lan, Ting-Ting Wang, Zi-Lin Chen, Qian-Pei Yang, Ai-Lin Hu, Yi-Fei Xia, Zhong-Zhi Zhou","doi":"10.5603/FHC.a2022.0030","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0030","url":null,"abstract":"<p><strong>Introduction: </strong>As one of the basic components of Astragalus, Astragaloside IV (AS-IV) has a protective effect on endothelial injury caused by diabetes. AS-IV stimulated endothelial progenitor cells (EPCs) to secrete exosomes loaded with miR-21. This study aimed to investigate the effects of AS-IV-mediated EPCs exosomal miR-21 (EPC-exos-miR-21) on high glucose (HG) damaged endothelial cells.</p><p><strong>Materials and methods: </strong>After the isolation of EPCs derived from fetal umbilical cord blood, exosomes of EPCs were obtained by differential centrifugation. The morphology of exosomes was observed by electron microscopy. The particle size distribution of exosomes was detected by Nanoparticle Tracking Analysis. Human umbilical vein endothelial cells (HUVECs) were treated with 33 mM glucose to establish an HG injury model. Flow cytometry and TUNEL assay were used to characterize the surface markers of primary EPCs and the apoptosis of HUVECs. The gene and protein expression were detected by qPCR, immunofluorescence, and Western blotting. A dual luciferase assay was used to verify the targeting relationship of miR-21 with PTEN.</p><p><strong>Results: </strong>HG environment led to time- and dose-dependent inhibition and enhancement of autophagy and apoptosis in HUVECs. AS-IV stimulated EPCs to secrete exosomes loaded with miR-21. Exosomes secreted by EPCs pretreated with AS-IV [EPC-exo(ASIV)] promoted autophagy and inhibited apoptosis in HG-impaired HUVECs. PTEN is a target of miR-21. MiR-21 carried by EPC-exo(ASIV) repressed PTEN expression in HG-impaired HUVECs. In contrast, p-AKT, p-mTOR, p-PI3K, cleaved PARP and PARP levels were upregulated. Compared to the HG group, the expression of autophagy regulatory genes (ATG5, beclin1 and LC3) was enhanced in the EPC-exo(ASIV) group and EPC-exo(ASIV)-miR-21 mimic group. In contrast, apoptosis-positive regulatory genes (Bax, caspase-3 and caspase-9) were attenuated. Further overexpression of PTEN reversed the expression of these genes.</p><p><strong>Conclusions: </strong>AS-IV-mediated EPC-exos-miR-21 could enhance autophagy and depress apoptosis in HG-damaged endothelial cells via the miR-21/PTEN axis.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10451564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Williames Leal Quirino, Amanda Pinheiro de Barros Albuquerque, Maria de Fátima Deodato de Souza, Antônio Felix da Silva Filho, Mário Rino Martins, Maira Galdino da Rocha Pitta, Michelly Cristiny Pereira, Moacyr Jesus Barreto de Melo
{"title":"FUCA2 and TSTA3 expression in gastric cancer: candidate biomarkers of malignant transformation.","authors":"Michael Williames Leal Quirino, Amanda Pinheiro de Barros Albuquerque, Maria de Fátima Deodato de Souza, Antônio Felix da Silva Filho, Mário Rino Martins, Maira Galdino da Rocha Pitta, Michelly Cristiny Pereira, Moacyr Jesus Barreto de Melo","doi":"10.5603/FHC.a2022.0031","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0031","url":null,"abstract":"<p><strong>Introduction: </strong>Aberrant fucosylation is closely related to malignant transformation, cancer detection, and evaluation of treatment efficacy. The fucosylation process requires GDP-L-fucose, fucosyltransferases, and fucosidases. In gastric cancer (GC), fucosylation alterations were associated with tumor formation, metastasis inhibition, and multi-drug resistance. It is not clear whether tissue-specific transplantation antigen P35B (TSTA3) and alpha-L-fucosidase 2 (FUCA2) have any effect on the development of GC.</p><p><strong>Materials and methods: </strong>We used immunohistochemistry to assess the expression of TSTA3 and FUCA2 in 71 gastric adenocarcinoma samples and their relationship with clinicopathological parameters.</p><p><strong>Results: </strong>TSTA3 expression was associated with lower histological grade I and II (P = 0.0120) and intestinal type Lauren classification (P = 0.0120). TSTA3 immunopositivity could predict Lauren's classification. Analysis of mRNA expression in GC validation cohorts corroborates the significant TSTA3 association with histological grade observed in our study. However, no associations were found between TSTA3 staining and overall survival. FUCA2 expression was markedly increased in GC tissues compared with non-tumoral tissues (P < 0.0001) and was associated with surgical staging III and IV (P = 0.0417) and advanced histological grade tumor states (P = 0.0125).</p><p><strong>Conclusions: </strong>Alterations of FUCA2 and TSAT3 immunoexpression could lay the basis for future studies using cell glycosylation as a biomarker for the planning of therapeutic strategy in primary gastric cancer.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kasra Arbabi Zaboli, Hossein Rahimi, Jose Thekkiniath, Amir Hossein Taromchi, Saeed Kaboli
{"title":"Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.","authors":"Kasra Arbabi Zaboli, Hossein Rahimi, Jose Thekkiniath, Amir Hossein Taromchi, Saeed Kaboli","doi":"10.5603/FHC.a2022.0007","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0007","url":null,"abstract":"<p><strong>Introduction: </strong>Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line.</p><p><strong>Materials and methods: </strong>Using bioinformatics database search, four different single guide RNAs (sgRNAs) to target exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively.</p><p><strong>Results: </strong>Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique.</p><p><strong>Conclusions: </strong>Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39613721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HDAC5 inhibits ovarian angiogenesis in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome.","authors":"Ying Wang, Yu Wang, Yao Chen, Qianqian Gao, Lihui Hou, Xiaoling Feng","doi":"10.5603/FHC.a2022.0024","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0024","url":null,"abstract":"<p><strong>Introduction: </strong>Abnormal ovarian angiogenesis is a common feature of polycystic ovary syndrome (PCOS), a typical endocrine disorder affecting women of reproductive age. Histone deacetylase 5 (HDAC5) has been documented as a suppressor of angiogenesis. The aim of this study was to explore the effect of HDAC5 on ovarian angiogenesis in a PCOS mouse model.</p><p><strong>Material and methods: </strong>PCOS was induced in female C57BL/6 mice by 20-day administration of dehydroepiandrosterone (DHEA). HDAC5 was over-expressed in PCOS mice by corresponding adenovirus injection. In total, 120 mice were used in this study. Western-blotting, real-time PCR, hematoxylin and eosin staining, enzyme-linked immunosorbent assay (ELISA), immunohistochemical staining, flow cytometry, and co-immunoprecipitation were respectively used to evaluate the effect of HDAC5 on PCOS mice.</p><p><strong>Results: </strong>PCOS ovaries showed a compensatory increase in HDAC5 expression, while HDAC5 over-expression alleviated abnormalities in ovarian morphology and serum hormone levels after PCOS modeling. HDAC5 inhibited ovarian angiogenesis in PCOS mice by regulating angiogenesis-related factors, such as VEGFA, platelet-derived growth factors B and D (PDGFB/D), and angiopoietins 1 and 2 (ANGPT1/2) and CD31. HDAC5 over-expression decreased levels of reactive oxygen species (ROS) and malondialdehyde, while promoting activities of catalase and superoxide dismutase in ovaries of PCOS mice, suggesting its suppressive effects on oxidative stress, an inducer of uncontrolled angiogenesis. Moreover, HDAC5 suppressed activation of angiogenesis-related HIF-1α/VEGFA/VEGFR2 signaling in PCOS ovaries partly via inhibiting VEGFR2 acetylation.</p><p><strong>Conclusions: </strong>This study reveals the protective role of HDAC5 in PCOS by inhibiting ovarian angiogenesis and provides a molecular candidate for PCOS therapy in the future.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40371501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaning Wei, Qian Zhang, Lin An, Guotao Fang, Dan Hong, Ting Jiao, Hua Yang, Zhiyu Wang
{"title":"Serum exosomal microRNA-370-3p and microRNA-196a-5p are potential biomarkers for the diagnosis and prognosis of hepatocellular carcinoma.","authors":"Yaning Wei, Qian Zhang, Lin An, Guotao Fang, Dan Hong, Ting Jiao, Hua Yang, Zhiyu Wang","doi":"10.5603/FHC.a2022.0019","DOIUrl":"https://doi.org/10.5603/FHC.a2022.0019","url":null,"abstract":"<p><strong>Introduction: </strong>Evidence has shown that some microRNAs (miRNAs) play a role in tumorigenesis of hepatocellular carcinoma (HCC). Herein, we aimed to evaluate the diagnostic and prognostic values of serum exosomal miR-370-3p and miR-196a-5p in patients with HCC.</p><p><strong>Material and methods: </strong>Serum exosomes in 90 HCC patients were extracted and identified. Serum exosomal miR-370-3p and miR-196a-5p expression in HCC patients were detected. The diagnostic value of miR-370-3p and miR-196a- 5p, relationship between miR-370-3p and miR-196a-5p expression and clinicopathological features and prognosis of patients with HCC were analyzed. Relationship between miR-370-3p and miR-196a-5p expression and liver function indices such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in HCC patients were analyzed. The effects of miR-370-3p and miR-196a-5p on Huh-7 HCC cells' proliferation, invasion and migration were determined.</p><p><strong>Results: </strong>Lower expression of miR-370-3p and higher expression of miR-196a-5p were found in serum exosomes of HCC patients. Serum exosomal miR-370-3p and miR-196a-5p were associated with tumor size, tumor grade and TNM stage as well as prognosis and liver function indices of HCC patients. Overexpressed miR-370-3p or silenced miR-196a-5p suppressed proliferation, invasion and migration of Huh-7 HCC cells.</p><p><strong>Conclusions: </strong>We suggest that miR-370-3p/miR-196a-5p in serum exosomes of HCC patients could be potential biomarkers for the diagnosis and prognosis of HCC.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40406728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Que, Fang-xiang Zhang, Jing-Jie Peng, Zhu zhang, Duwen Zhang, Ming-Hong He
{"title":"Repeated isoflurane exposures of neonatal rats contribute to cognitive dysfunction in juvenile animals: the role of miR-497 in isoflurane-induced neurotoxicity.","authors":"Yuanyuan Que, Fang-xiang Zhang, Jing-Jie Peng, Zhu zhang, Duwen Zhang, Ming-Hong He","doi":"10.5603/FHC.A2021.0011","DOIUrl":"https://doi.org/10.5603/FHC.A2021.0011","url":null,"abstract":"INTRODUCTION\u0000Isoflurane anesthesia at the period of brain development can lead to neurotoxicity and long-term cognitive impairment. This study aimed to investigate the role of miR-497 on isoflurane-induced neurotoxicity.\u0000\u0000\u0000MATERIAL AND METHODS\u0000Neonatal rats (P7) were subject to isoflurane for 2 h at P7, P9, and P11. MiR-497 and neuron apoptosis were evaluated in hippocampal tissue by qRT-PCR and western blot. Fear conditioning test and Morris water maze were performed to determine cognitive function. The cell viability of isolated hippocampal neuronal cells exposed to isoflurane was measured using MTT test. The regulation of phospholipase D1 (PLD1) by miR-497 in isolated hippocampal neuronal cells was evaluated by luciferase reporter assays and western blot. Immunohistochemistry and TUNEL staining were employed to examine the PLD1 expression and neuronal cell apoptosis in hippocampus of neonatal rats, respectively.\u0000\u0000\u0000RESULTS\u0000Repeated isoflurane anesthesia led to neurons' apoptosis and long-term cognitive impairment. Isoflurane exposure led to apoptosis and viability reduction in hippocampal neuronal cells. MiR-497 was observed to be upregulated after isoflurane exposure both in vivo and in vitro. Knockdown of miR-497 attenuated isoflurane-induced neuronal cells apoptosis and viability reduction. Furthermore, PLD1 was predicted and then validated as a novel target of miR-497. miR-497 could negatively regulate PLD1 by binding to its 3'-untranslated region. Downregulation of PLD1 was also observed after isoflurane exposure in neonatal rat hippocampus and hippocampal primary neuronal cell cultures.\u0000\u0000\u0000CONCLUSIONS\u0000Induction of miR-497 was involved in isoflurane anesthesia-induced cognitive impairment and neuronal cell apoptosis by targeting PLD1. miR-497 may be a novel potential mechanism in isoflurane-induced neurotoxicity so that our findings provide new insight into a better and understanding of the clinical application of isoflurane.","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna Komarowska, Agnieszka Malinska, Zhanat Komekbai, Barbara Brominska, Katarzyna Bednarek-Rajewska, Marek Ruchala, Marcin Rucinski
{"title":"Immunohistochemical analysis of ghrelin expression in various types of adrenal tumors.","authors":"Hanna Komarowska, Agnieszka Malinska, Zhanat Komekbai, Barbara Brominska, Katarzyna Bednarek-Rajewska, Marek Ruchala, Marcin Rucinski","doi":"10.5603/FHC.a2021.0009","DOIUrl":"https://doi.org/10.5603/FHC.a2021.0009","url":null,"abstract":"INTRODUCTION Ghrelin, originally isolated from the endocrine cells of the gastric mucosa, is also expressed in many peripheral tissues, including normal adrenals and adrenocortical tumors. It was shown that ghrelin stimulates proliferation and inhibits apoptosis of adrenocortical cells. In the current study, we compared ghrelin expression at the protein level in various adrenal tumors. We analyzed whether immunoreactive ghrelin could be considered as a potential marker for different types of adrenal tumors. MATERIAL AND METHODS Study was carried out on 200 adrenal specimens arranged on microscope slide in tissue microarray format. We performed standardized immunohistochemical reactions with semiquantitative reaction intensity measurements. RESULTS At the protein level, the expression of ghrelin was significantly reduced in adrenocortical adenocarcinoma in relation to the control group and pheochromocytoma as well as cancer-adjacent normal adrenal tissue. In contrast, a relatively high ghrelin expression was found in pheochromocytoma compared to all analyzed groups, with the exception of cancer-adjacent normal adrenal tissue. CONCLUSIONS The ghrelin expression profile at the protein level may be associated with the type of adrenal tumors. In this context, our results suggest that adrenal immunoreactive ghrelin may be considered as a sensitive and specific marker for differentiating adrenocortical carcinoma from adrenocortical adenoma and pheochromocytoma.","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25576258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Xiong, Hua Chen, Jiequan Lu, Jie Ren, Chen Nie, Ruijuan Liang, Feng Liu, Baofeng Huang, Yu Luo
{"title":"IL-39 increases ROS production and promotes the phosphorylation of p38 MAPK in the apoptotic cardiomyocytes.","authors":"Wei Xiong, Hua Chen, Jiequan Lu, Jie Ren, Chen Nie, Ruijuan Liang, Feng Liu, Baofeng Huang, Yu Luo","doi":"10.5603/FHC.a2021.0019","DOIUrl":"https://doi.org/10.5603/FHC.a2021.0019","url":null,"abstract":"<p><strong>Introduction: </strong>The cytokine interleukin (IL)-39 is a novel member of the IL-12 family. Our previous study found that the serum level of IL-39 significantly increased in patients with acute myocardial infarction. However, the role of IL-39 in cardiomyocyte apoptosis remains unclear.</p><p><strong>Material and methods: </strong>In this study, the cultured mouse HL-1 cardiomyocytes were incubated with PBS, 0-100 ng/mL IL-39, 200 μM H2O2 or 20 μM Trolox.</p><p><strong>Results: </strong>IL-39 promoted the production of intracellular reactive oxygen species (ROS) in a concentration dependent manner in HL-1 cardiomyocytes. IL-39 and H2O2 both significantly promoted the production of intracellular ROS, increased the level of intracellular CCL2, stimulated the apoptotic progress of cardiomyocytes, increased the mRNA and protein expression levels of Bax, caspase-3, and p-p38 MAPK, and decreased the mRNA and protein expression levels of Bcl-2. ROS production, CCL2 level, cardiomyocyte apoptosis, and expression of Bax, caspase-3, and p-p38 MAPK were significantly amplified by the administration of IL-39 combined with H2O2, and these processes were significantly alleviated by an antioxidant Trolox.</p><p><strong>Conclusion: </strong>This study was novel in revealing that IL-39 promoted apoptosis by stimulating the phosphorylation of p38 MAPK in mouse HL-1 cardiomyocytes.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39432070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}