{"title":"The Morphology of Cell Differentiation, Terminal Differentiation and Ageing Seems To Reflect the Same Process: a Short Note.","authors":"K Smetana, D Mikulenkova, H Klamova","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Based on simple microscopic cell morphology in blood and bone marrow smear preparations, it seems to be likely that the cell differentiation and terminal differentiation in human blood cells, and particularly in erythroid or granulocytic lineages, simultaneously reflect ageing of the lineage progenitors and terminal differentiation steps. The terminal differentiation stages of both these lineages actually appear as senescent cells. Abnormal ageing of progenitor cells may represent one of the \"dysplastic\" phenomena of the premature terminal differentiation state. Such state is characterized by heterochromatin condensation and nucleolar morphology similar to that in fully differentiated terminal cells of granulocytic or erythroid lineages. It should also be mentioned that in some known erythropoietic disorders, less differentiated erythroblasts may lose nuclei similarly as \"normal\" fully terminally differentiated cells of the erythroid cell lineage. It seems to be clear that cells in both abnormal less differentiated and terminally differentiated stages of erythroid or granulocytic lineages lose the ability to multiply similarly as senescent cells. On the other hand, the background of cell ageing and differentiation is very complicated and requires a different approach than the simple microscopic morphology at the single cell level. However, the morphology and clinical cytology at the single cell level might still contribute with complementary data to more sophisticated complex studies of that topic. In addition, the morphological approach facilitates the study of the main components of single cells in various states, including the differentiation steps or ageing.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 2","pages":"70-75"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39499678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia BiologicaPub Date : 2021-01-01DOI: 10.14712/fb2021067040135
E Nečas, K Faltusová, C-L Chen
{"title":"Latent Defect in Haematopoiesis of UBC-GFP Mice Sheds Light on the Lymphoid Developmental Potential of Haematopoietic Stem Cells.","authors":"E Nečas, K Faltusová, C-L Chen","doi":"10.14712/fb2021067040135","DOIUrl":"10.14712/fb2021067040135","url":null,"abstract":"","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 4","pages":"135"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39774088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z Knazicka, V Fialkova, H Duranova, J Bilcikova, E Kovacikova, M Miskeje, V Valkova, Z Forgacs, S Roychoudhury, P Massanyi, N Lukac
{"title":"Human Adrenocortical Carcinoma (NCI-H295R) Cell Line as an In Vitro Cell Culture Model for Assessing the Impact of Iron on Steroidogenesis.","authors":"Z Knazicka, V Fialkova, H Duranova, J Bilcikova, E Kovacikova, M Miskeje, V Valkova, Z Forgacs, S Roychoudhury, P Massanyi, N Lukac","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The aim of this in vitro study was to examine the dose-dependent effects of iron as a potential endocrine disruptor in relation to the release of sexual steroid hormones by a human adrenocortical carcinoma (NCI-H295R) cell line. The cells were exposed to different concentrations (3.90, 62.50, 250, 500, 1000 μM) of FeSO4.7H2O and compared with the control group (culture medium without FeSO4.7H2O). Cell viability was measured by the metabolic activity assay. Quantification of sexual steroid production was performed by enzyme-linked immunosorbent assay. Following 48 h culture of the cells in the presence of FeSO4.7H2O, significantly (P < 0.001) increased production of progesterone was observed at the lowest concentration (3.90 μM) of FeSO4.7H2O, whereas the lowest release of progesterone by NCIH295R cells was noted after addition of 1000 μM of FeSO4.7H2O, which did not elicit cytotoxic action (P > 0.05). Testosterone production was substantially increased at the concentrations ≤ 62.50 μM of FeSO4.7H2O. Lower levels of testosterone were recorded in the groups with higher concentrations (≥ 250 μM) of FeSO4.7H2O (P > 0.05). The presented data suggest that iron has no endocrine disruptive effect on the release of sexual steroid hormones, but its toxicity may be reflected at other points of the steroidogenesis pathway.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 2","pages":"76-81"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39498135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia BiologicaPub Date : 2021-01-01DOI: 10.14712/fb2021067010016
P Simara, L Tesarova, I Tapuchova, J Celerova, I Koutna
{"title":"T-Cell Activation: Post-Infection Diagnostic Tool for COVID-19.","authors":"P Simara, L Tesarova, I Tapuchova, J Celerova, I Koutna","doi":"10.14712/fb2021067010016","DOIUrl":"10.14712/fb2021067010016","url":null,"abstract":"<p><p>COVID-19 is caused by the SARS-CoV-2 virus and has spread globally in 2020. Cellular immunity may serve as an important functional marker of the disease, especially in the asymptomatic cases. Blood samples were collected from 46 convalescent donors with a history of COVID-19 and 38 control donors. Quantification of the T-cell response upon contact with SARS-CoV-2 proteins in vitro was based on IFN-γ. Significantly higher numbers of activated cells were measured in patients who underwent COVID-19. Anti-SARS-CoV-2 T cells were detected weeks after the active virus disappeared from the organism. Repeated sample collection after five months proved that the T-cell activation was weaker in time in 79 % of the patients. In the majority of cases, the CD4+ helper T-cell subpopulation was responsible for the immune reaction. Moreover, different viral proteins triggered activation in CD4+ helper and in CD8+ cytotoxic T cells. Together, these findings suggest that the T-cell activation level identifies the individuals who underwent COVID-19 and may become a diagnostic tool for the disease.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 1","pages":"16-27"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39193403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia BiologicaPub Date : 2021-01-01DOI: 10.14712/fb2021067020049
M D Morsy, M A Alsaleem, M S Aboonq, S O Bashir, H A Al-Daher
{"title":"Acylated Ghrelin Administration Inhibits Sleeve Gastrectomy-Induced Hippocampal Oxidative Stress, Apoptosis and Tau-Hyperphosphorylation by Activating the PI3K/Akt Pathway.","authors":"M D Morsy, M A Alsaleem, M S Aboonq, S O Bashir, H A Al-Daher","doi":"10.14712/fb2021067020049","DOIUrl":"10.14712/fb2021067020049","url":null,"abstract":"<p><p>This study investigated the impact of exogenous replacement therapy with acylated ghrelin (AG) post sleeve gastrectomy (SG) on the memory function in rats. In addition, we investigated the possible underlying mechanisms, including the effects on markers of oxidative stress, tau phosphorylation, and apoptosis. Adult male Wistar rats were divided into four groups (N = 18/group) as follows: sham (control), SG, SG+AG (100 μM), and SG+AG+LY294002 (0.25 μg/100 g). We continued all treatments daily for four weeks post-surgery. SG impaired the spatial, retention, and recognition memories as tested by the Morris water maze test, passive avoidance test, and novel object recognition test, respectively. Also, it enhanced the levels of reactive oxygen species and lipid peroxides, reduced glutathione and protein levels of Bcl-2, and increased the levels of Bax and cleaved caspase-3 in the hippocampus. In addition, SG reduced the hippocampal levels of acetylcholine and brain-derived neurotrophic factor. Concomitantly, it inhibited the hippocampal activity of Akt and increased the activity of glycogen synthase kinase 3β and tau protein phosphorylation. Exogenous administration of acylated ghrelin to rats that had undergone SG prevented memory deficits. Also, it prevented the alteration in the above-mentioned biochemical parameters, an effect that was abolished by co-administration of LY294002 (phosphoinositide 3-kinase inhibitor). In conclusion, AG replacement therapy after SG in rats protects them against memory deficits and hippocampal damage by suppressing tau protein phosphorylation, mediated by activating PI3K/Aktinduced inhibition of glycogen synthase kinase 3β.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 2","pages":"49-61"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39499676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia BiologicaPub Date : 2021-01-01DOI: 10.14712/fb2021067040143
M Marounek, Z Volek, T Taubner, M Czauderna
{"title":"Metabolic Effects of a Hydrophobic Alginate Derivative and Tetrahydrolipstatin in Rats Fed a Diet Supplemented with Palm Fat and Cholesterol.","authors":"M Marounek, Z Volek, T Taubner, M Czauderna","doi":"10.14712/fb2021067040143","DOIUrl":"10.14712/fb2021067040143","url":null,"abstract":"<p><p>The effects of octadecylamide of alginic acid (amidated alginate) and tetrahydrolipstatin on serum and hepatic cholesterol, and the faecal output of fat and sterols, were investigated in rats. Amidated alginate is a sorbent of lipids, tetrahydrolipstatin is an inhibitor of pancreatic lipase. Rats were fed diets containing cholesterol and palm fat at 10 and 70 g/kg, respectively. Palm fat was provided by coconut meal. Amidated alginate at 40 g/kg diet significantly decreased serum total cholesterol, low-density lipoprotein and hepatic cholesterol, and hepatic lipids and increased the faecal output of fat and coprostanol. Tetrahydrolipstatin at 300 mg/kg diet significantly decreased low-density lipoprotein cholesterol and hepatic lipids and increased the faecal output of fat. The intake of feed was not significantly influenced; however, the weight gains in rats fed amidated alginate were lower than in rats of the control group. Both amidated alginate and tetrahydrolipstatin modified the fatty acid profile in excreta lipids. Concentrations of saturated fatty acids were decreased and those of unsaturated fatty acids increased. Despite different modes of action, amidated alginate and tetrahydrolipstatin were equally efficient in removing the dietary fat from the body.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 4","pages":"143-149"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39774090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I Leontovyc, T Koblas, Z Berkova, K Bittenglova, A Leontovyc, M Benesik, F Saudek
{"title":"A Preliminary Characterization of a Novel Recombinant Clostridial Collagenase Blend.","authors":"I Leontovyc, T Koblas, Z Berkova, K Bittenglova, A Leontovyc, M Benesik, F Saudek","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Clostridial collagenases are essential biotechnological tissue dissociation agents owing to their ability to cleave different types of collagen. Standardization of collagenase-based protocols has been hampered by impurities in products manufactured from Clostridium histolyticum. To enhance the purification process, we produced recombinant collagenase classes G and H, taking advantage of the Escherichia coli expression system. The respective gene sequences were derived from C. histolyticum and modified by addition of a C-terminal polyhistidine tag. Harvested bacteria were lysed and the collagenase protein was affinity purified using a His-tag column. The purity, identity, integrity of the eluted collagenases G and H were determined by SDS electrophoresis and Western blot. The proteolytic activity of the collagenase G and H blend (rColGH) was determined by the standard FALGPA assay. The tissue dissociation activity was verified using a standardized method for isolation of rat pancreatic islets. Biocompatibility of the blend was validated by a standardized viability assay on the isolated islets. Two batches of rColGH were produced and compared to a commercially available collagenase. Based on our results, we conclude that rColGH is a functional and non-toxic novel recombinant collagenase worth further characterization and blend optimization in order to make it a competitive commercial product.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 2","pages":"82-89"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39498136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Sato, K Hirose, K Ichise, H Yoshino, T Harada, Y Hatayama, H Kawaguchi, M Tanaka, I Fujioka, Y Takai, M Aoki
{"title":"Not Only Hypoxia- but Radiation-Induced Epithelial-Mesenchymal Transition Is Modulated by Hypoxia-Inducible Factor 1 in A549 Lung Cancer Cells.","authors":"M Sato, K Hirose, K Ichise, H Yoshino, T Harada, Y Hatayama, H Kawaguchi, M Tanaka, I Fujioka, Y Takai, M Aoki","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hypoxia leads to post-treatment metastasis and recurrences of cancer via the epithelial-mesenchymal transition (EMT). Radiotherapy itself may also contribute to the acquisition of EMT phenotypes. Despite extensive studies on the EMT driven by either hypoxia or radiation stimuli, the molecular mechanisms characterizing these EMT events remain unclear. Thus, we aimed to evaluate the differences in the molecular pathways between hypoxia-induced EMT (Hypo-EMT) and radiation-induced EMT (R-EMT). Further, we investigated the therapeutic effects of HIF-1α inhibitor (LW6) on Hypo-EMT and R-EMT cells. A549 cells, lung adenocarcinoma cell line, acquired enhanced wound-healing activity under both hypoxia and irradiation. Localization of E-cadherin was altered from the cell membrane to the cytoplasm in both hypoxia and irradiated conditions. Of note, the expression levels of vimentin, one of the major EMT markers, was enhanced in irradiated cells, while it decreased under hypoxia condition. Importantly, LW6 significantly blocked EMT-related malignant phenotypes in both Hypo-EMT cells and R-EMT cells with concomitant re-location of E-cadherin onto the cell membrane. Moreover, LW6 deflected stress responsive signalling, JNK, activated sustainably under hypoxic condition, and the blockage of JNK impaired EMT phenotypes. Together, this work demonstrated the molecular events underlying Hypo-EMT and R-EMT, and highlighted HIF-1α as a therapeutic target not only in Hypo- EMT, but also in R-EMT.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 2","pages":"62-69"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39499677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of SRSF3 Alleviates Proliferation and Migration of Gastric Cancer Cells by Regulating the PI3K/AKT/mTOR Signalling Pathway.","authors":"J Xie, Y Sun, Q Xu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study was aimed to investigate the impact of serine/arginine-rich splicing factor 3 (SRSF3) on the proliferation and migration of gastric cancer (GC) cells. SRSF3 levels in GC tissues and cell lines were measured by Western blotting. Functional assays were used for evaluation of GC cell proliferation, migration and invasion. The PI3K/AKT/mTOR pathway was then examined by Western blotting. SRSF3 exhibits abnormal expression for the significantly increased levels in GC. SRSF3 knockdown significantly suppressed GC progression. SRSF3 knockdown significantly inhibited activation of PI3K/AKT/mTOR signalling. Inhibition of SRSF3 alleviates proliferation and migration of GC cells, and this process is mediated by inactivation of PI3K/ AKT/mTOR signalling. Targeting SRSF3 may be a promising strategy to combat GC.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 3","pages":"102-107"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39774094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B F Yan, X Chen, J Liu, S J Liu, J Z Zhang, Q Q Zeng, J A Duan
{"title":"Asiatic Acid Induces Mitochondrial Apoptosis via Inhibition of JAK2/STAT3 Signalling Pathway in Human Osteosarcoma.","authors":"B F Yan, X Chen, J Liu, S J Liu, J Z Zhang, Q Q Zeng, J A Duan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Osteosarcoma (OS), a severe malignant bone tumour, usually occurs in adolescents and children and has a poor prognosis. Asiatic acid (AA), an active component isolated from Centella asiatica (L.) Urb., exhibits appreciable anti-oxidant and anti-tumour activities. So far, the effects and underlying mechanisms of AA against OS have not been clarified. Here, we explored the anti-tumour effects of AA against human OS and the involved mechanism mediating its actions. To evaluate effects of AA on the cell proliferation of human OS cells, cell viability and colony formation assays were performed. Flow cytometry was used to evaluate apoptosis in OS cells exposed to AA and mitochondrial membrane potential. Western blotting and RT-PCR were applied to determine expression of the relevant proteins and their mRNA levels. Our explorations showed that AA inhibits proliferation of human OS cells in a concentration- and time-dependent manner, and induces apoptosis of OS cells by the intrinsic (mitochondrial) pathway. Importantly, we found that inhibition of the AA-induced phosphorylation of JAK2/STAT3 signalling molecules and the decrease in MCL-1 contributed to the anti-tumour efficacy of AA. Collectively, our results suggest that AA could evoke mitochondrial- induced apoptosis in human OS cells by suppression of the JAK2/STAT3 pathway and MCL-1 expression. These results strongly demonstrate that AA could be a potential anti-tumour agent for OS treatment.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 3","pages":"108-117"},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39788807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}