{"title":"Application of transporter assays for drug discovery and development: an update of the literature.","authors":"Donna A Volpe","doi":"10.1080/17460441.2024.2387790","DOIUrl":"10.1080/17460441.2024.2387790","url":null,"abstract":"<p><strong>Introduction: </strong>Determining whether a new drug is a substrate, inhibitor or inducer of efflux or uptake membrane transporters has become a routine process during drug discovery and development. <i>In vitro</i> assays are utilized to establish whether a new drug has the potential to be an object (substrate) or precipitant (inhibitor, inducer) in transporter-mediated clinical drug-drug interactions. The findings from these <i>in vitro</i> experiments are then used to determine whether further <i>in vivo</i> drug interaction studies are necessary for a new drug.</p><p><strong>Areas covered: </strong>This article provides an update on <i>in vitro</i> transporter assays, focusing on new uses of transfected cells, time-dependent inhibition, transporter induction, and complex model systems.</p><p><strong>Expert opinion: </strong>The newer <i>in vitro</i> assays add to the toolbox in defining new drugs as transporter substrates, inhibitors, or inducers. Complex models such as spheroids, organoids, and microphysiological systems require standardization and further research with model transporter substrates and inhibitors. In drug discovery, the more traditional transporter assays may be employed as substrate and inhibitor screening assays. In drug development, more complex cell models can be employed in later drug development to better understand how transporter(s) are involved in the absorption, distribution, and excretion of new drugs.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1247-1257"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc-Antoine de La Vega, Ara Xiii, Shane Massey, Jessica R Spengler, Gary P Kobinger, Courtney Woolsey
{"title":"An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses.","authors":"Marc-Antoine de La Vega, Ara Xiii, Shane Massey, Jessica R Spengler, Gary P Kobinger, Courtney Woolsey","doi":"10.1080/17460441.2024.2386100","DOIUrl":"10.1080/17460441.2024.2386100","url":null,"abstract":"<p><strong>Introduction: </strong>Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. <i>In silico</i> simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures.</p><p><strong>Areas covered: </strong>In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models.</p><p><strong>Expert opinion: </strong>A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using <i>in silico</i> models to accurately predict immunological outcomes.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1185-1211"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to address the complexity of multi-targeted drug discovery for Alzheimer's disease?","authors":"Juan F González, José M Sánchez-Montero","doi":"10.1080/17460441.2024.2385576","DOIUrl":"10.1080/17460441.2024.2385576","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1149-1152"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perspectives on current approaches to virtual screening in drug discovery.","authors":"Ingo Muegge, Jörg Bentzien, Yunhui Ge","doi":"10.1080/17460441.2024.2390511","DOIUrl":"10.1080/17460441.2024.2390511","url":null,"abstract":"<p><strong>Introduction: </strong>For the past two decades, virtual screening (VS) has been an efficient hit finding approach for drug discovery. Today, billions of commercially accessible compounds are routinely screened, and many successful examples of VS have been reported. VS methods continue to evolve, including machine learning and physics-based methods.</p><p><strong>Areas covered: </strong>The authors examine recent examples of VS in drug discovery and discuss prospective hit finding results from the critical assessment of computational hit-finding experiments (CACHE) challenge. The authors also highlight the cost considerations and open-source options for conducting VS and examine chemical space coverage and library selections for VS.</p><p><strong>Expert opinion: </strong>The advancement of sophisticated VS approaches, including the use of machine learning techniques and increased computer resources as well as the ease of access to synthetically available chemical spaces, and commercial and open-source VS platforms allow for interrogating ultra-large libraries (ULL) of billions of molecules. An impressive number of prospective ULL VS campaigns have generated potent and structurally novel hits across many target classes. Nonetheless, many successful contemporary VS approaches still use considerably smaller focused libraries. This apparent dichotomy illustrates that VS is best conducted in a fit-for-purpose way choosing an appropriate chemical space. Better methods need to be developed to tackle more challenging targets.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1173-1183"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approaches for the discovery of cinnamic acid derivatives with anticancer potential.","authors":"Ioannis Fotopoulos, Dimitra Hadjipavlou-Litina","doi":"10.1080/17460441.2024.2387122","DOIUrl":"10.1080/17460441.2024.2387122","url":null,"abstract":"<p><strong>Introduction: </strong>Cinnamic acid is a privileged scaffold for the design of biologically active compounds with putative anticancer potential, following different synthetic methodologies and procedures. Since there is a need for the production of potent anticancer, cinnamate moiety can significantly contribute in the design of new and more active anticancer agents.</p><p><strong>Areas covered: </strong>In this review, the authors provide a review on the synthetic approaches for the discovery of cinnamic acid derivatives with anticancer potential. Results from molecular simulations, hybridization, and chemical derivatization along with biological experiments <i>in vitro</i> and structural activity relationships are given, described, and discussed by the authors. Information for the mechanism of action is taken from original literature sources.</p><p><strong>Expert opinion: </strong>The authors suggest that (i) numerous areas of biology-pharmacology need to be considered: selectivity, in vivo studies, toxicity and drug-likeness, the mechanism of action in animals and humans, development of more efficient assays for various cancer types; (ii) hybridization techniques outbalance in the discovery and production of compounds with higher activity and greater selectivity; (iii) repositioning offers new anticancer cinnamic agents.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1281-1291"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Parise, Sofia Cresca, Alessandra Magistrato
{"title":"Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins.","authors":"Angela Parise, Sofia Cresca, Alessandra Magistrato","doi":"10.1080/17460441.2024.2387856","DOIUrl":"10.1080/17460441.2024.2387856","url":null,"abstract":"<p><strong>Introduction: </strong>Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules.</p><p><strong>Area covered: </strong>This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors.</p><p><strong>Expert opinion: </strong>The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1259-1279"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Gabriella Matera, Paola Rogliani, Clive P Page, Luigino Calzetta, Mario Cazzola
{"title":"The discovery and development of gefapixant as a novel antitussive therapy.","authors":"Maria Gabriella Matera, Paola Rogliani, Clive P Page, Luigino Calzetta, Mario Cazzola","doi":"10.1080/17460441.2024.2391902","DOIUrl":"10.1080/17460441.2024.2391902","url":null,"abstract":"<p><strong>Introduction: </strong>Gefapixant, a P2X 3 receptor antagonist, shows considerable potential in managing refractory or unexplained chronic cough. Clinical trials have consistently demonstrated its efficacy in significantly reducing cough frequency and alleviating associated symptoms. However, its adverse effect profile, particularly taste disturbances such as dysgeusia and hypogeusia, the incidence of which is dose-dependent, poses a significant challenge to patient compliance and overall treatment satisfaction.</p><p><strong>Areas covered: </strong>The authors review the mechanism of action of gefapixant, the dose-dependent nature of its adverse effects and the findings from various clinical trials, including Phase 1, Phase 2, and Phase 3 studies. The authors also cover its regulatory status, post-marketing data, and its main competitors.</p><p><strong>Expert opinion: </strong>Gefapixant represents a significant advancement in treating chronic cough. However, balancing efficacy and tolerability is crucial. Lower effective doses and potential combination therapies may mitigate taste disturbances. Patient education and close monitoring during treatment are also important for optimal outcomes. Further research is needed to refine dosing strategies to minimize side effects while maintaining therapeutic efficacy. This research and personalized treatment approaches are key to optimizing gefapixant therapy, ensuring improved management of chronic cough while reducing adverse effects. However, pharmaceutical trials and proposals must be adapted to align with each regulatory body's specific requirements and concerns.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1159-1172"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update.","authors":"Léa Lescouzères, Shunmoogum A Patten","doi":"10.1080/17460441.2024.2387791","DOIUrl":"10.1080/17460441.2024.2387791","url":null,"abstract":"<p><strong>Introduction: </strong>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies.</p><p><strong>Areas covered: </strong>In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS.</p><p><strong>Expert opinion: </strong>Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1213-1233"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction.","authors":"","doi":"10.1080/17460441.2024.2392351","DOIUrl":"10.1080/17460441.2024.2392351","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"i"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting polo-like kinase 1: advancements and future directions in anti-cancer drug discovery.","authors":"Monika Raab, Sven Becker, Mourad Sanhaji","doi":"10.1080/17460441.2024.2385603","DOIUrl":"10.1080/17460441.2024.2385603","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1153-1157"},"PeriodicalIF":6.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}