Angela Serra, Michele Fratello, Antonio Federico, Dario Greco
{"title":"An update on knowledge graphs and their current and potential applications in drug discovery.","authors":"Angela Serra, Michele Fratello, Antonio Federico, Dario Greco","doi":"10.1080/17460441.2025.2490253","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Knowledge graphs are becoming prominent tools in computational drug discovery. They effectively integrate heterogeneous biomedical data and generate new hypotheses and knowledge.</p><p><strong>Areas covered: </strong>This article is based on a literature review using Google Scholar and PubMed to retrieve articles on existing knowledge graphs relevant to the drug discovery field. The authors compare the types of entities, relationships, and data sources they encompass. Additionally, the authors provide examples of their use in the drug discovery field and discuss potential strategies for advancing this research area.</p><p><strong>Expert opinion: </strong>Knowledge graphs are crucial in drug discovery, but their construction leads to challenges in data integration and consistency. Future research should prioritize the standardization of data sources and data modeling. More efforts are needed for the integration in knowledge graphs of diverse data types, such as chemical structures and epigenetic data, to enhance their effectiveness. Additionally, advancements in large language models should be pursued to aid the development of knowledge graphs, provide intuitive querying capabilities for non-expert users, and explain knowledge graphs -derived predictions, thereby making these tools more accessible and their insights more interpretable for a wider audience.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":"20 5","pages":"599-619"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2490253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Knowledge graphs are becoming prominent tools in computational drug discovery. They effectively integrate heterogeneous biomedical data and generate new hypotheses and knowledge.
Areas covered: This article is based on a literature review using Google Scholar and PubMed to retrieve articles on existing knowledge graphs relevant to the drug discovery field. The authors compare the types of entities, relationships, and data sources they encompass. Additionally, the authors provide examples of their use in the drug discovery field and discuss potential strategies for advancing this research area.
Expert opinion: Knowledge graphs are crucial in drug discovery, but their construction leads to challenges in data integration and consistency. Future research should prioritize the standardization of data sources and data modeling. More efforts are needed for the integration in knowledge graphs of diverse data types, such as chemical structures and epigenetic data, to enhance their effectiveness. Additionally, advancements in large language models should be pursued to aid the development of knowledge graphs, provide intuitive querying capabilities for non-expert users, and explain knowledge graphs -derived predictions, thereby making these tools more accessible and their insights more interpretable for a wider audience.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.