Fariborz Seifollahi, Mohammad Hassan Eikani, Nahid Khandan
{"title":"Cold-pressed camelina oil deacidification using short path molecular distillation: An optimization study and comparison with conventional techniques","authors":"Fariborz Seifollahi, Mohammad Hassan Eikani, Nahid Khandan","doi":"10.1016/j.fbp.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.06.010","url":null,"abstract":"<div><p>In this research, the impact of short-path molecular distillation (SPMD), as a green and solventless method, in the deacidification of cold-pressed camelina oil (CPCO) was investigated. Physical refining of crude vegetable oils with high free fatty acids (FFA) content leads to healthier oils, preventing excessive oil loss and minimizing waste production. Using central composite design approach-based response surface methodology (RSM-CCD) analysis, optimized SPMD process parameters were determined and verified. The investigated factors were evaporation temperature (ET: 160–200 °C), feed flow rate (Q: 0.50–3.00 mL/min), and feed temperature (FT: 80–120 °C). Deacidification efficiency (DE) and distillate-to-feed mass ratio (D/F) were selected as the separation performance responses. In addition, to monitor the qualitative effect of the SPMD, peroxide value (PV) and total polar compounds (PC) were designated as the complementary responses. The optimized values for ET, Q, and FT could be considered to be 200 °C, 0.50 mL/min, and 100 °C, respectively. At the optimum operating conditions, DE, D/F, PV, and PC were determined as 63.27 %, 5.78 %, 24.5 meq/kg, and 11.4 wt%, respectively. The SPMD were compared with conventional fractional distillation (FD), steam stripping distillation (SSD), and alkali neutralization (AN). It was validated that SPMD could efficiently and sustainably deacidify the CPCO. Additionally, the effect of two successive SPMD treatments at the optimum conditions was also examined. By double deacidification, the DE, D/F, PV, and PC values were 74.34 %, 6.88 %, 27.6 meq/kg, and 16.0 wt%, respectively.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isomerization of maltose to maltulose under microwave heating using uncalcined scallop shell powder","authors":"Takashi Kobayashi , Yoshiyuki Watanabe , Pramote Khuwijitjaru , Shuji Adachi","doi":"10.1016/j.fbp.2024.06.008","DOIUrl":"10.1016/j.fbp.2024.06.008","url":null,"abstract":"<div><p>Uncalcined scallop shell powder, consisting mainly of calcium carbonate, and an aqueous maltose solution were placed in a pressure-resistant vessel and heated in a domestic microwave oven to isomerize maltose to maltulose. When a maltose solution (50 mL) was heated at a power of 700 W, a high maltulose yield of approximately 30 % was achieved in as short a time as 105 s. As the reaction progressed, the shell powder dissolved and neutralized acidic by-products to suppress the decrease in pH, keeping the pH above 7, where the isomerization by Lobry de Bruyn-Alberda van Ekenstein transformation proceeded. The average selectivity for isomerization of maltose to maltulose under various reaction conditions was 0.822. This would be because the shell powder kept the pH of the reaction solution in the range of 7–9 and suppressed the progression of side reactions. The coloration of the reaction solution increased rapidly when the yield of maltulose approached its maximum value. This indicated that if the reaction were to be stopped when the yield of maltulose was close to its maximum value, a high yield of maltulose solution with low coloration could be obtained.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and stability of zinc oxide nanoparticles stabilized multiphase system composed of red palm oil and water","authors":"Helena Listiarini , David Agusta Chandra , Farras Hanifah Azizah , Nadine Kurniadi , Risya Fahira Lubis , Saraswati , Slamet Budijanto , Endang Prangdimurti , Vallerina Armetha , Nanik Purwanti , Azis Boing Sitanggang","doi":"10.1016/j.fbp.2024.06.009","DOIUrl":"10.1016/j.fbp.2024.06.009","url":null,"abstract":"<div><p>This study investigated the stability and rheological properties of multiphase systems comprising red palm oil and water, with zinc oxide nanoparticles (ZnO) as stabilizers. Multiphase systems with 60 % and 70 % (<em>v/v</em>) oil contents exhibited excellent physical stability. To achieve a stable multiphase system, a 60 % (<em>v/v</em>) oil content required 1.50 % (<em>w/v</em>) ZnO. However, when the oil content was increased to 70 % v/v, only 0.75 % (<em>w/v</em>) ZnO were required. Increasing ZnO concentration enhanced system stability, as demonstrated by minimal changes in the total carotenoid content and reduced lipid oxidative product formation. Based on rheological characterization, these multiphase systems exhibited shear-thinning flow behavior and viscoelastic properties. The multiphase system consisting of 70 % (<em>v/v</em>) RPO stabilized by 1.50 % (<em>w/v</em>) ZnO was identified as the best multiphase formulation. Conclusively, the findings in this study are valuable insights for formulating stable multiphase systems, composed of red palm oil and water.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weibiao Wang , Yuping Sa , Weiman Zhang , Xiaoying Wang , Yinli Wang , Hui Yuan , Liuyan Li , Shuqin Ding , Gidion Wilson , Xueqin Ma
{"title":"Purification and separation of caffeoyl spermidine derivatives from goji leaf tea with ion exchange resin and the mechanisms involved","authors":"Weibiao Wang , Yuping Sa , Weiman Zhang , Xiaoying Wang , Yinli Wang , Hui Yuan , Liuyan Li , Shuqin Ding , Gidion Wilson , Xueqin Ma","doi":"10.1016/j.fbp.2024.06.005","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.06.005","url":null,"abstract":"<div><p>Goji leaf (<em>Lycium barbarum</em> leaves, LBL) tea is a well-known beverage that has been developed and utilized for its numerous health benefits. Recently, we have successfully extracted four caffeoyl spermidines derivatives from LBL (LBLS), namely N-caffeoylputrescine, N-acetyl-N′-caffeoylputrescine, N<sub>1</sub>-dihydrocaffeoyl-N<sub>10</sub>-caffeoylspermidine and N<sub>1</sub>, N<sub>10</sub>-dicaffeoylspermidine. Given the diverse bioactivities exhibited by LBLS, our study aimed to develop a precise separation method and explore the possible purification mechanism. Firstly, the extraction process was optimized, followed by the selection of 001×7 resin for the enrichment and purification of LBLS from six resins. Subsequently, the adsorption mechanism was comprehensively examined using FT-IR, DSC, XRD, and XPS techniques. Additionally, investigations into the adsorption kinetics, isotherm models, and adsorption thermodynamics revealed the adsorption process of LBLS on 001×7 resin was spontaneous and exothermic, followed a monolayer adsorption mechanism, and conformed to the pseudo-second-order kinetic model and Langmuir model. The optimal procedure involved adsorbing a 25 mg/mL LBL extract onto a 3.5 BV (bed volume) at 2 BV/h, then eluting with an 8 % NaCl-55 % ethanol solution for 5 BV at the same rate. Finally, LBLS was separated using PHPLC to obtain monomer compounds. This process yields 1.57 %±0.1 % LBLS, and four monomers with purity range from 90.7 % to 100 % were obtained.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recep Gunes , Ibrahim Palabiyik , Fatma Duygu Ceylan , Esra Capanoglu , Bayram Yurt , Sefik Kurultay
{"title":"In vitro gastrointestinal digestion of a novel toffee type soft candy formulated by a latex obtained from Gundelia tournefortii L. and enriched with a lactic acid-based propolis extract","authors":"Recep Gunes , Ibrahim Palabiyik , Fatma Duygu Ceylan , Esra Capanoglu , Bayram Yurt , Sefik Kurultay","doi":"10.1016/j.fbp.2024.06.003","DOIUrl":"10.1016/j.fbp.2024.06.003","url":null,"abstract":"<div><p>In this study, a toffee type soft candy product was developed for the first time with a new production process by means of using a plant based latex (kenger gum) obtained from <em>Gundelia tournefortii</em> L. D-optimal mixture design was used for the optimization of components in the kenger gum added sugared (KGS) and sugar-free (KGSF) candy samples. According to optimization step, the amounts of kenger gum that provided the best sensory scores were found as 2.16 g/100 g and 2.00 g/100 g sample for KGS and KGSF formulations, respectively, and then lactic acid (80 %) based propolis extract (LPE, 0.5 %, 1 %, 2.5 %) were added to these novel candy samples. According to the results, water activity values were determined as 0.6210–0.6315, 0.6197–0.6290 and 0.5226–0.5313 for the control, KGS, and KGSF groups, respectively. Considering the instrumental texture and color parameters, use of kenger gum and different amounts of LPE caused differences in the characteristic properties of samples. Compared to the control group, chlorogenic acid, caffeic acid, ferulic acid, sinapic acid, and rosmarinic acid were detected in the samples with added kenger gum. The presence of both kenger gum and LPE in candy samples might have resulted with an interaction and affected the <em>in vitro</em> bioaccessibility of the phenolic compounds.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Rumanek , Michał Kołodziej , Wojciech Piątkowski , Dorota Antos
{"title":"Isolation and purification of a monoclonal antibody from a cell culture supernatant by multistage precipitation and solid-liquid extraction","authors":"Tomasz Rumanek , Michał Kołodziej , Wojciech Piątkowski , Dorota Antos","doi":"10.1016/j.fbp.2024.05.016","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.05.016","url":null,"abstract":"<div><p>A process of multistage pH mediated precipitation was developed for capture and purification of a monoclonal antibody (<em>mAb</em>) from a Chinese hamster ovary cell culture (CHO) harvest. The <em>mAb</em> was separated from low molecular mass impurities (<em>LMWI</em>) and high molecular weight impurities (<em>HMWI</em>) by a sequence of two precipitation steps or by a sequence of precipitation and solid<strong>-</strong>liquid extraction (<em>SLE</em>). In the former approach, <em>HMWI</em> were precipitated from the harvest at pH 5 in the presence of polyethylene glycol (<em>PEG</em>), whereas the obtained supernatant was subsequently subjected to precipitation at pH 8 to obtain the <em>mAb</em> of 96 % chromatographic purity in a precipitate form. In the latter approach, the <em>mAb</em> was precipitated from the harvest at pH 8 in the presence of <em>PEG</em> to isolate the <em>mAb</em> from <em>LMWI</em>, then the precipitate obtained was subjected to <em>SLE</em> to extract the <em>mAb</em> of 99 % purity in a form of liquid solution. The coupling of precipitation at pH 8 and <em>SLE</em> allowed effective removal of DNA from 9260 ng/mL in the feed to 1.4 ng/mL in the product of two-stage <em>SLE</em>, and host cell proteins (<em>HCP</em>) from 300 µg/mL to 0.07 µg/mL, which was not possible by the coupling of two precipitation stages at pH 5 and 8. Therefore, the combination of precipitation and SLE can be a promising technique for capture of <em>mAbs</em> from CHO cell harvests.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fermentation-assisted extraction of polysaccharides from the roots of Codonopsis pilosula using a selected Rhizopus arrhizus strain","authors":"Jianfeng Mei, Shiyan Shen, Yang Wang, Yipeng Wang, Yu Yi, Guoqing Ying","doi":"10.1016/j.fbp.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.06.004","url":null,"abstract":"<div><p>The roots of <em>Codonopsis pilosula</em>, also known as Codonopsis Radix, or Dangshen in the Chinese Pharmacopoeia, are plant parts commonly used for medicine and food. Polysaccharides are the major components found among the various bioactives in Codonopsis Radix and have attracted increasing attention in medicinal and functional foods in China. Currently, the methods reported for extracting Codonopsis Radix polysaccharides (CPs) still suffer from issues such as lengthy processing times, low yields, or high costs. In order to increase the extraction yield of CPs, a process of solid-state fermentation-assisted extraction using a fungus was developed in this study. Strain DS6 of <em>Rhizopus arrhizus</em> was isolated from a microbial enrichment culture on Codonopsis Radix. The yield of CPs was significantly increased after fermentation with DS6. Next, the operating conditions for the fermentation-assisted process of CP extraction were optimized. The yield of CPs extracted from the fermented Codonopsis Radix reached 24.7 % ± 0.43 %, representing a 46.2 % increase compared to the yield of CPs obtained from the unfermented Codonopsis Radix (16.9 % ± 0.35 %). The CPs extracted using the fermentation-assisted method retained their natural antioxidant activity. In conclusion, this process enhanced the yield of CPs and showed potential for industrial applications.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carina V. Gomes , Joana C. Araújo , Diego M. Chaves , Raul Fangueiro , Diana P. Ferreira
{"title":"Improving textile circular economy through banana fibers from the leaves central rib: effect of different extraction methods","authors":"Carina V. Gomes , Joana C. Araújo , Diego M. Chaves , Raul Fangueiro , Diana P. Ferreira","doi":"10.1016/j.fbp.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.06.002","url":null,"abstract":"<div><p>In the last decades, the use of agricultural wastes as a source of natural cellulosic fibers has become urgent, given the growing demand for natural and synthetic fiberss. Cellulose is a renewable natural resource and the most abundant in nature, being obtained from biomass such as wood, cotton and vegetables. Banana fiber is of great interest as bananas are one of the most consumed fruits in the world. Banana fiber is extracted from the banana pseudo-stems and leaves that remain after the fruit is harvested. Added value products based on banana fiber are an innovative material with strong potential in the market. The extraction of fibers from the banana plant can be carried out mechanically, chemically, or biologically. A combination of these methods is also possible, meaning that mechanical extraction can be followed by other treatments. In this work, the extraction of banana fibers was carried out using different methods, namely, manual extraction, chemical extraction (sodium hydroxide (NaOH)), biological extraction (retting in water at room temperature and 35 ºC) and boiling water. All the extracted fibers were analyzed using Optical Microscopy, Fourier-Transform Infrared Spectroscopy coupled with an Attenuated Total Reflectance accessory (ATR-FTIR), Thermogravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffraction (XRD) and their mechanical properties were also evaluated. Fibers with diameters between 27.46 and 240.89 µm were obtained. Chemical extraction increased the tensile strength of the fibers by effectively removing non-cellulosic components, but some cellulose degradation was observed. Biological extractions removed lignin and hemicellulose, resulting in increased fiber individualization and homogeneous fiber surfaces with improved thermal properties.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960308524001068/pdfft?md5=14724d91a40d3ebac6feb056704c90cc&pid=1-s2.0-S0960308524001068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing functional attributes of rice protein concentrate through Aspergillus awamori MTCC 6652 assisted solid-state fermentation: Development of value-added vegan smoothie","authors":"Nikhil Dnyaneshwar Patil , Ankur Kumar , Kandi Sridhar , Prince Chawla , Minaxi Sharma","doi":"10.1016/j.fbp.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.fbp.2024.06.001","url":null,"abstract":"<div><p>The study investigated the effects of solid-state fermentation using <em>Aspergillus awamori</em> MTCC 6652 on rice protein's functional properties, characteristics, and application in product formulations for varying durations (48, 72, and 96 h). Fermentation for 72 h notably enhanced the RPC's protein content by 7.83 % and improved its color profile towards lighter shades, evidenced by increased L* values and decreased a* and b* values, indicative of enzymatic degradation and pigment alteration, particularly notable after 96 h. Enhanced functional properties were observed at 72 h of fermentation, including increased protein solubility (by 9.8 %), oil and water holding capacity (by 14.33 % and 18.96 %, respectively), foaming capacity and stability (by 14.03 % and 14.11 %, respectively), and emulsifying capacity and stability (by 5.047 % and 5.69 %, respectively). Structural changes in fermented rice protein were observed through scanning electron microscopy, indicating alterations induced by <em>A. awamori</em> MTCC 6652. Fourier transform infrared spectroscopy and thermogravimetric analysis show shifts in peak positions and increased thermal stability of Fermented RPC. Additionally, microbial analysis of smoothie samples containing fermented protein showed increased microbial counts over storage time. Sensory analysis revealed comparable attributes between fermented protein-incorporated smoothies and standard smoothies initially, with slight reductions over time. This study emphasizes the considerable impact of fermentation on rice protein's properties and its potential in smoothie formulations. Overall, these findings highlight the significant impact of fermentation on the structural, chemical, and sensory properties of rice protein, thereby expanding its potential applications in smoothie formulations and potentially other food products.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Henao-González , Dairon David , Juan Torres-Oquendo , Paulo José do Amaral Sobral , Oscar Vega-Castro
{"title":"Design and optimization of a strawberry-based dispersion to produce a spray drying functional powdered product, fortified with folic acid and zinc","authors":"Daniel Henao-González , Dairon David , Juan Torres-Oquendo , Paulo José do Amaral Sobral , Oscar Vega-Castro","doi":"10.1016/j.fbp.2024.05.017","DOIUrl":"10.1016/j.fbp.2024.05.017","url":null,"abstract":"<div><p>The optimization of a strawberry-based dispersion to produce a powdered product fortified with Folic Acid (FA) and Zinc (Zn) was realized. The methodology involved production and characterization of strawberry pulp and strawberry-based dispersion, optimization of the dispersion process, and the manufacture and description of a powdered product. The optimal conditions for obtaining the strawberry-based dispersion were determined to be 11.7 % arabic gum (AG) and 23.3 % maltodextrin (MD). The recovery percentage of the powder was 71.38 %. The folic acid (FA) and zinc (Zn) contents in the strawberry powder were 272.3 mg/100 g and 0.21 %, respectively. The powder contains 20 % and 58 % of the daily reference values for pregnant mothers for FA and Zn, respectively. It is concluded that it was possible to optimize dispersion and obtain a strawberry powder fortified with AF and Zn suitable for consumption by pregnant women.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960308524001019/pdfft?md5=dd858fb4f1ee1868d588bb40f4d66e87&pid=1-s2.0-S0960308524001019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}