{"title":"The m6 RNA methylation regulator KIAA1429 is associated with autophagy-mediated drug resistance in lung cancer","authors":"Bo Ma, Lei Xiu, Lili Ding","doi":"10.1096/fba.2023-00083","DOIUrl":"10.1096/fba.2023-00083","url":null,"abstract":"<p>N6-methyladenosine (m6A) modification plays a crucial role in cancer progression. However, the role of m6A modification-mediated autophagy underlying non-small cell lung cancer (NSCLC) gefitinib resistance remains unknown. Here, we discovered that m6A methyltransferase KIAA1429 was highly expressed in NSCLC gefitinib-resistant cells (PC9-GR) as well as tissues, and KIAA1429 high expression was associated with poor survival. In addition, silent KIAA1429 repressed gefitinib resistance in NSCLC and reduced tumor growth in vivo. Mechanistically, KIAA1429 stabilized WTAP, a significant player in autophagy, by binding to the 3′ untranslated regions (3′-UTR) of WTAP. In a word, our findings indicated that KIAA1429 could elevate NSCLC gefitinib resistance, which may provide a promising targeted therapy for NSCLC patients.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 4","pages":"105-117"},"PeriodicalIF":2.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140240296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotong Zhang, Haifen Zhang, Shuai Li, Fan Fang, Yanran Yin, Qiang Wang
{"title":"Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases","authors":"Xiaotong Zhang, Haifen Zhang, Shuai Li, Fan Fang, Yanran Yin, Qiang Wang","doi":"10.1096/fba.2023-00153","DOIUrl":"10.1096/fba.2023-00153","url":null,"abstract":"<p>Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 4","pages":"118-130"},"PeriodicalIF":2.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140078501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity","authors":"Jianjian Shi, Lei Wei","doi":"10.1096/fba.2024-00015","DOIUrl":"https://doi.org/10.1096/fba.2024-00015","url":null,"abstract":"<p>In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 3","pages":"85-102"},"PeriodicalIF":2.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2024-00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James A. Hendrixson, Alicen James, Nisreen S. Akel, Dominique J. Laster, Julie A. Crawford, Stuart B. Berryhill, Melda Onal
{"title":"Loss of chaperone-mediated autophagy does not alter age-related bone loss in male mice","authors":"James A. Hendrixson, Alicen James, Nisreen S. Akel, Dominique J. Laster, Julie A. Crawford, Stuart B. Berryhill, Melda Onal","doi":"10.1096/fba.2023-00133","DOIUrl":"https://doi.org/10.1096/fba.2023-00133","url":null,"abstract":"<p>Chaperone-mediated autophagy (CMA) is a lysosome-dependent degradation pathway that eliminates proteins that are damaged, partially unfolded, or targeted for selective proteome remodeling. CMA contributes to several cellular processes, including stress response and proteostasis. Age-associated increase in cellular stressors and decrease in CMA contribute to pathologies associated with aging in various tissues. CMA contributes to bone homeostasis in young mice. An age-associated reduction in CMA was reported in osteoblast lineage cells; however, whether declining CMA contributes to skeletal aging is unknown. Herein we show that cellular stressors stimulate CMA in UAMS-32 osteoblastic cells. Moreover, the knockdown of an essential component of the CMA pathway, LAMP2A, sensitizes osteoblasts to cell death caused by DNA damage, ER stress, and oxidative stress. As elevations in these stressors are thought to contribute to age-related bone loss, we hypothesized that declining CMA contributes to the age-associated decline in bone formation by sensitizing osteoblast lineage cells to elevated stressors. To test this, we aged male CMA-deficient mice and controls up to 24 months of age and examined age-associated changes in bone mass and architecture. We showed that lack of CMA did not alter age-associated decline in bone mineral density as measured by dual x-ray absorptiometry (DXA). Moreover, microCT analysis performed at 24 months of age showed that vertebral cancellous bone volume, cortical thickness, and porosity of CMA-deficient and control mice were similar. Taken together, these results suggest that reduction of CMA does not contribute to age-related bone loss.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 3","pages":"73-84"},"PeriodicalIF":2.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Club cell-specific telomere protection protein 1 (TPP1) protects against tobacco smoke-induced lung inflammation, xenobiotic metabolic dysregulation, and injurious responses","authors":"Thivanka Muthumalage, Chiara Goracci, Irfan Rahman","doi":"10.1096/fba.2023-00115","DOIUrl":"10.1096/fba.2023-00115","url":null,"abstract":"<p>Inhaling xenobiotics, such as tobacco smoke is a major risk factor for pulmonary diseases, e.g., COPD/emphysema, interstitial lung disease, and pre-invasive diseases. Shelterin complex or telosome provides telomeric end protection during replication. Telomere protection protein 1 (TPP1) is one of the main six subunits of the shelterin complex supporting the telomere stability and genomic integrity. Dysfunctional telomeres and shelterin complex are associated as a disease mechanism of tobacco smoke-induced pulmonary damage and disease processes. The airway epithelium is critical to maintaining respiratory homeostasis and is implicated in lung diseases. Club cells (also known as clara cells) play an essential role in the immune response, surfactant production, and metabolism. Disrupted shelterin complex may lead to dysregulated cellular function, DNA damage, and disease progression. However, it is unknown if the conditional removal of TPP1 from Club cells can induce lung disease pathogenesis caused by tobacco smoke exposure. In this study, conditional knockout of Club-cell specific TPP1 demonstrated the instability of other shelterin protein subunits, such as TRF1, dysregulation of cell cycle checkpoint proteins, p53 and downstream targets, and dysregulation of telomeric genes. This was associated with age-dependent senescence-associated genes, increased DNA damage, and upregulated RANTES/IL13/IL33 mediated lung inflammation and injury network by cigarette smoke (CS). These phenomena are also associated with alterations in cytochrome P450 and glutathione transferases, upregulated molecular pathways promoting lung lesions, bronchial neoplasms, and adenocarcinomas. These findings suggest a pivotal role of TPP1 in maintaining lung homeostasis and injurious responses in response to CS. Thus, these data TPP1 may have therapeutic value in alleviating telomere-related chronic lung diseases.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 2","pages":"53-71"},"PeriodicalIF":2.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139622618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of air–liquid interface on cultured human intestinal epithelial cells","authors":"Akanksha Sabapaty, Po-Yu Lin, James C. Y. Dunn","doi":"10.1096/fba.2023-00132","DOIUrl":"10.1096/fba.2023-00132","url":null,"abstract":"<p>The intestinal epithelium is a dynamic barrier that allows the selective exchange of ions, hormones, proteins, and nutrients. To accomplish this, the intestinal epithelium adopts a highly columnar morphology which is partially lost in submerged culturing systems. To achieve this, small intestinal tissue samples were utilized to obtain human intestinal crypts to form enteroids. The Transwell system was subsequently employed to form a monolayer of cells that was cultured in either the submerged condition or the air–liquid Interface (ALI) condition. We found that the human intestinal monolayer under the ALI condition exhibited morphology more similar to the normal intestinal epithelium. F-actin localization and brush border formation were observed apically, and the integrity of the tight junctions was preserved in the ALI condition. Fewer apoptotic cells were observed in the ALI conditions as compared to the submerged conditions. The monolayer of cells expressed a higher level of secretory cell lineage genes in the ALI condition. The ALI condition positively contributes toward a more differentiated phenotype of epithelial cells. It serves as an amplifier that enhances the existing differentiation cue. The ALI system provides a more differentiated platform to study intestinal function compared to submerged conditions.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 2","pages":"41-52"},"PeriodicalIF":2.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy Dickinson, Sakari Joenväärä, Tiialotta Tohmola, Jutta Renkonen, Petri Mattila, Timo Carpén, Antti Mäkitie, Suvi Silén
{"title":"Altered microheterogeneity at several N-glycosylation sites in OPSCC in constant protein expression conditions","authors":"Amy Dickinson, Sakari Joenväärä, Tiialotta Tohmola, Jutta Renkonen, Petri Mattila, Timo Carpén, Antti Mäkitie, Suvi Silén","doi":"10.1096/fba.2023-00066","DOIUrl":"10.1096/fba.2023-00066","url":null,"abstract":"<p>Protein glycosylation responds sensitively to disease states. It is implicated in every hallmark of cancer and has recently started to be considered as a hallmark itself. Changes in N-glycosylation microheterogeneity are more dramatic than those of protein expression due to the non-template nature of protein glycosylation. This enables their potential use in serum-based diagnostics. Here, we perform glycopeptidomics on serum from patients with oropharyngeal squamous cell carcinoma (OPSCC), compared to controls and comparing between cancers based on etiology (human papilloma virus- positive or negative). Using MS2, we then targeted glycoforms, significantly different between the groups, to identify their glycopeptide compositions. Simultaneously we investigate the same serum proteins, comparing whether N-glycosylation changes reflect protein-level changes. Significant glycoforms were identified from proteins such as alpha-1-antitrypsin (SERPINA1), haptoglobin, and different immunoglobulins. SERPINA1 had glycovariance at 2 N-glycosylation sites, that were up to 35 times more abundant in even early-stage OPSCCs, despite minimal differences between SERPINA1 protein levels between groups. Some identified glycoforms' fold changes (FCs) were in line with serum protein level FCs, others were less abundant in early-stage cancers but with great variance in higher-stage cancers, such as on immunoglobulin heavy constant gamma 2, despite no change in protein levels. Such findings indicate that glycovariant analysis might be more beneficial than proteomic analysis, which is yet to be fruitful in the search for biomarkers. Highly sensitive glycopeptide changes could potentially be used in the future for cancer screening. Additionally, characterizing the glycopeptide changes in OPSCC is valuable in the search for potential therapeutic targets.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 1","pages":"26-39"},"PeriodicalIF":2.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138974648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “From goal to outcome: Analyzing the progression of biomedical sciences PhD careers in a longitudinal study using an expanded taxonomy”","authors":"","doi":"10.1096/fba.2023-00134","DOIUrl":"10.1096/fba.2023-00134","url":null,"abstract":"<p>Brown, A. M., Meyers, L. C., Varadarajan, J., Ward, N. J., Cartailler, J. P., Chalkley, R. G., Gould, K. L., and Petrie, K. A. From goal to outcome: Analyzing the progression of biomedical sciences PhD careers in a longitudinal study using an expanded taxonomy. <i>FASEB BioAdvances</i> 2023;5:427–452. https://doi.org/10.1096/fba.2023-00072</p><p>This article is part of the Bioscience Careers special collection. It was added to the collection after publication.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 1","pages":"40"},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138626074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Hua Chow, Cecilia López-Martínez, W. Conrad Liles, William A. Altemeier, Sina A. Gharib, Chi F. Hung
{"title":"Toll-interacting protein inhibits transforming growth factor beta signaling in mouse lung fibroblasts","authors":"Yu-Hua Chow, Cecilia López-Martínez, W. Conrad Liles, William A. Altemeier, Sina A. Gharib, Chi F. Hung","doi":"10.1096/fba.2023-00054","DOIUrl":"10.1096/fba.2023-00054","url":null,"abstract":"<p>Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFβ) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFβ and in the bleomycin model of experimental lung fibrosis using <i>Tollip−/−</i> mice. We hypothesize that if TOLLIP negatively regulates TGFβ signaling, then <i>Tollip−/−</i> mouse lung fibroblasts (MLFs) would have enhanced response to TGFβ treatment, and <i>Tollip−/−</i> mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFβ (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFβ-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, <i>Tollip−/−</i> mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFβ signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFβR1 Western blot. In response to TGFβ treatment, both WT and <i>Tollip−/−</i> MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, <i>Tollip−/−</i> MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of <i>Acta2</i> by qPCR. Functionally, <i>Tollip−/−</i> MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFβ signaling in <i>Tollip−/−</i> through SMAD2 in vitro and in vivo. <i>Tollip−/−</i> mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, <i>Tollip−/−</i> mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 1","pages":"12-25"},"PeriodicalIF":2.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles J. Kim, Chanpreet Singh, Marina Kaczmarek, Madison O'Donnell, Christine Lee, Kevin DiMagno, Melody W. Young, William Letsou, Raddy L. Ramos, Michael C. Granatosky, Michael Hadjiargyrou
{"title":"Mustn1 ablation in skeletal muscle results in functional alterations","authors":"Charles J. Kim, Chanpreet Singh, Marina Kaczmarek, Madison O'Donnell, Christine Lee, Kevin DiMagno, Melody W. Young, William Letsou, Raddy L. Ramos, Michael C. Granatosky, Michael Hadjiargyrou","doi":"10.1096/fba.2023-00082","DOIUrl":"https://doi.org/10.1096/fba.2023-00082","url":null,"abstract":"<p><i>Mustn1</i>, a gene expressed exclusively in the musculoskeletal system, was shown in previous in vitro studies to be a key regulator of myogenic differentiation and myofusion. Other studies also showed <i>Mustn1</i> expression associated with skeletal muscle development and hypertrophy. However, its specific role in skeletal muscle function remains unclear. This study sought to investigate the effects of <i>Mustn1</i> in a conditional knockout (KO) mouse model in Pax7 positive skeletal muscle satellite cells. Specifically, we investigated the potential effects of <i>Mustn1</i> on myogenic gene expression, grip strength, alterations in gait, ex vivo investigations of isolated skeletal muscle isometric contractions, and potential changes in the composition of muscle fiber types. Results indicate that <i>Mustn1</i> KO mice did not present any substantial phenotypic changes or significant variations in genes related to myogenic differentiation and fusion. However, an approximately 10% decrease in overall grip strength was observed in the 2-month-old KO mice in comparison to the control wild type (WT), but this decrease was not significant when normalized by weight. KO mice also generated approximately 8% higher vertical force than WT at 4 months in the hindlimb. Ex vivo experiments revealed decreases in about 20 to 50% in skeletal muscle contractions and about 10%–20% fatigue in soleus of both 2- and 4-month-old KO mice, respectively. Lastly, immunofluorescent analyses showed a persistent increase of Type IIb fibers up to 15-fold in the KO mice while Type I fibers decreased about 20% and 30% at both 2 and 4 months, respectively. These findings suggest a potential adaptive or compensatory mechanism following <i>Mustn1</i> loss, as well as hinting at an association between <i>Mustn1</i> and muscle fiber typing. Collectively, <i>Mustn1</i>'s complex roles in skeletal muscle physiology requires further research, particularly in terms of understanding the potential role of <i>Mustn1</i> in muscle repair and regeneration, as well as with influence of exercise. Collectively, these will offer valuable insights into <i>Mustn1</i>'s key biological functions and regulatory pathways.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"5 12","pages":"541-557"},"PeriodicalIF":2.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}