{"title":"THE EFFECT OF COSURFACTANT IN CO2 ABSORPTION IN WATER – IN – OIL EMULSION","authors":"I. Dali, K. Kamarudin","doi":"10.26480/ees.02.2018.42.46","DOIUrl":"https://doi.org/10.26480/ees.02.2018.42.46","url":null,"abstract":"Carbon dioxide is one of the main concern in the environment when it comes to energy usage of fuel, even the fuel is coming from natural gas sources. Apart from endangered the environment, carbon dioxide also affects the caloric value of the natural gas itself. The presence of carbon dioxide as contaminants is a nuisance for oil and gas industry as its capability of forming corrosion in pipeline, thus its removal is vital for this industry. The absorption of carbon dioxide in emulsions would be an effective method to prevent corrosion. This study focused on the effects of cosurfactant, complementing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with surfactant which is sorbitan oleate (SPAN 80), on the stability of water-in-oil (W/O) emulsion. This study also investigates the use of blended amines which are methyldiethanolamine (MDEA)/2-amino-2-methyl-1-propanol (AMP) and MDEA as aqueous phase. A modified rotating disk contactor (RDC) was used in absorption process and gas chromatography (GC) was used to determine the amount of the CO2 absorbed. Analysis of carbon dioxide absorption through emulsion indicates that different cosurfactant may change the absorption mechanism.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"10 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80200772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EFFECT OF PH AND MOISTURE CONTENT ON CURRENT DENSITY OF IMPRESSED CURRENT CATHODIC PROTECTION : RESPONSE SURFACE METHODOLOGY STUDY","authors":"Dzulikram Baharuddin, M. Samsudin","doi":"10.26480/ees.02.2018.15.19","DOIUrl":"https://doi.org/10.26480/ees.02.2018.15.19","url":null,"abstract":"This study is based on one of the corrosion control which is cathodic protection on impressed current cathodic protection (ICCP). The purpose of this study is to investigate the effect of pH and moisture content on corrosion current density of ICCP for carbon steel pipe. Several factors could affect the corrosion current density including pH and moisture content of the soil. This study will be conducted by investigate the effect of these variables on current density using one-factor-at-a-time (OFAT) method and response surface methodology (RSM) via face centered central composite design (FCCCD) using Design-Expert 6.0.6 software. The results of this study is analyses via analysis of variance (ANOVA) and used to illustrate the interactions between variables on current density by graphical, equation and modeling which are response surface plots (three-dimensional plots-3D) and contour plots (two-dimensional plots-2D).","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74701603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. F. A. Rozuki, Muhammad Hanis Tajuddin, N. Yusof
{"title":"EFFECT OF DIFFERENT SOLVENT ON ASYMMETRIC POLYSULFONE (PSF) MEMBRANES FOR CO2/CH4 SEPARATION","authors":"N. F. A. Rozuki, Muhammad Hanis Tajuddin, N. Yusof","doi":"10.26480/EES.02.2018.11.14","DOIUrl":"https://doi.org/10.26480/EES.02.2018.11.14","url":null,"abstract":"The asymmetric membranes solution were developed for CO2/CH4 separation by mixing polysulfone (PSf) with NMethyl-2-pyrrolidone (NMP). A volatile solvent, Tetrahydrofuran (THF) was introduced into the casting solution by various loading (0 to 75%) to form a high gas separation performance of asymmetric membranes via dry/wet phase inversion method. The produced membranes were characterized using Scanning Electron Microscopic (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and gas permeability test. SEM images of a membrane with NMP as a solvent has the thickest dense layer while a membrane with THF as a solvent has the thinnest thickness of the membrane. FTIR results indicating the present of sulfur dioxide (SO2) and methyl (CH3) group at wavelength 1170 cm-1 and 2969 cm-1 respectively verifying the use of PSf as a polymer. As for gas permeation test, the used of THF as a solvent shows the highest CO2/CH4 selectivity with the lowest permeability.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82278416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STRESS ANALYSIS ON PRESSURE VESSEL","authors":"J. Jegatheesan, Z. Zakaria","doi":"10.26480/ees.02.2018.53.57","DOIUrl":"https://doi.org/10.26480/ees.02.2018.53.57","url":null,"abstract":"Researches done prior to this study focuses on designing of pressure vessel, theoretical studies on failure modes and catastrophic accidents of pressure vessel. This study intents to analyse stress effect based on ASME VIII Division I, PD 5500, and EN 13445 and design a storage tank using PVElite. This study is done for varying internal design temperature and internal design pressure. It is limited by tank capacity, size, type, shape and orientation of pressure vessel. The external design temperature, external design pressure, head type, joint efficiency, diameter, length, and corrosion allowance are restricted as well. The study is done by selecting type of pressure vessel, code of practices, materials and design parameters before performing analysis using PVElite. A LPG storage tank was designed using PVElite. A total of twelve simulation is done and the results are tabulated. It is seen that American standard is capable of simulating for internal temperature less than external temperature which is not possible than the other two counterparts. Here, the external temperature is set at 250C and the internal temperature varies from 00C – 600C with increment of 200C. British and European standard had an error while performing simulation for 00C and 200C The American standard also has the highest value for required thickness for external thickness for head and shell with 3.36518mm and 5.45026mm for head and shell respectively. The internal thickness for American standard is also the highest with 2.5mm, 2.65822mm, 4.01886mm and 6.14440mm for head thickness at 00C, 200C, 400C and 600C respectively while shell thickness is 2.5mm, 2.66606mm, 4.03766m and 6.18855mm for 00C, 200C, 400C and 600C respectively. Stress computed for head and shell for American standard was also the highest with 19.074 MPa, 38.148 MPa, 64.429 MPa and 118.258 MPa at 00C, 200C, 400C and 600C respectively for head and 15.525 MPa, 25.772 MPa, 60.151 MPa and 102.455 MPa for 00C, 200C, 400C and 600C respectively at shell. It is concluded that American standard is the better option of the three.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75704963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EMISSION DUE TO MOTOR GASOLINE FUEL IN RECIPROCATING LYCOMING O-320 ENGINE IN COMPARISON TO AVIATION GASOLINE FUEL","authors":"Yunenthiran Rajendran, R. Mohsin","doi":"10.26480/EES.02.2018.20.24","DOIUrl":"https://doi.org/10.26480/EES.02.2018.20.24","url":null,"abstract":"Piston-powered aircrafts rely on 100 low lead (100LL) Aviation Gasoline (AVGAS) for safe operation. AVGAS has high levels of Tetraethyl Lead (TEL). TEL is an additive which is added in aviation fuels to assist in anti-knocking. The main reason for continuation of TEL as an additive in AVGAS is because aircraft engines are prone to engines knock when operate at higher power settings and temperatures. TetraEthyl Lead (TEL) or Plumbum (Pb), which is the additive of AVGAS, for octane boosting and valve recession avoidance, can cause serious health impacts. One of the possible technique to eliminate the effect of Pb emissions caused by general aviation was to make unleaded Motor Gasoline (MOGAS) accessible as another option to leaded AVGAS for the use in reciprocating aviation engines. The unleaded MOGAS has relatively lower octane rating compared to leaded AVGAS. Due to knocking and engine parameter performance, utilization of a fuel with too low of an octane rating is a risk. Besides, numerous gasses are produced as by product of combustion as a result of emission from aviation engines. In this study, a full scale engine emission due to locally available unleaded MOGAS fuels are determined and compared to the typical leaded AVGAS used. This ground level emission tests are performed by evaluating different fuels on emissions from a full scale Lycoming O-320-B2A reciprocating engine. The fuels to be tested in this study are 100 LL AVGAS, RON100 MOGAS, RON97 MOGAS, and RON95 MOGAS. Each of this fuel is tested at a time in Lycoming O-320-B2A reciprocating engine and the data for emission of of exhaust gases CO, NOx and HC, were measured by an emission analyser (EMS 5002) and recorded. Although the emission of both AVGAS and MOGAS are moreover the same it is expected that that MOGAS burns cleanly and minimal combustion chamber deposits are produced in the engine.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75659301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. F. Zulkapli, N. M. Rashid, M. Sokri, N. S. Nasri
{"title":"STUDY ON OPTICAL PROPERTIES OF GRAPHENE-TIO2 NANOCOMPOSITE AS PHOTOANODES LAYER IN DYE SENSITIZED SOLAR CELL (DSSC)","authors":"M. F. Zulkapli, N. M. Rashid, M. Sokri, N. S. Nasri","doi":"10.26480/ees.02.2018.39.41","DOIUrl":"https://doi.org/10.26480/ees.02.2018.39.41","url":null,"abstract":"Dye Sensitized Solar Cell (DSSC) using titanium dioxide (TiO2) has begun to play a significant role in future solar energy since it is known as cost effective and highly efficient. DSSC is the third generation of photovoltaic cells that have been widely investigated as a promising replacement of current commercial solar cell. However, the highest efficiency of DSSC still has not achieved the minimum requirement so that it can be commercialize. Much research has been done to improve DSSC performance by focusing on photoanodes layer. In this study, graphene was employed into TiO2photoanode to increase the efficiency and to enhance the performance of dye sensitized solar cell. Four different samples of nanocomposites paste were prepared by varying the graphene composition of 0.00, 0.30, 0.50 and 0.70 wt%. The prepared samples were coated on Fluorine-Doped Tin Oxide (FTO) conductive glass substrates by a doctor blade method and annealed at 450oC for 30 minutes. The morphology and structure of the graphene-TiO2 nanocomposites layer were characterized by using Field Emission Scanning Electron Microscope (FESEM). The optical properties were studied by using UV-visible spectroscopy. Based on the result show that addition of graphene into TiO2 have provide larger surface area compared to pure TiO2. The optical properties of Graphene-TiO2 nanocomposites also improved as the fundamental of absorption edge has shifted toward longer wavelength and reduce the optical band gap.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72918969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OPTIMIZATION PERFORMANCE OF BIOLOGICAL CATHODIC PROTECTION SYSTEM USING ORGANIC WASTE","authors":"E. Masri, M. Samsudin","doi":"10.26480/EES.02.2018.25.29","DOIUrl":"https://doi.org/10.26480/EES.02.2018.25.29","url":null,"abstract":"In this study, the concept of Microbial Fuel Cells (MFCs) is applied in the biological cathodic protection (CP) system. MFCs are a promising technology for electricity production from a variety of materials. Impressed current cathodic protection (ICCP) was the tradition method used in corrosion control method. Biological CP uses the microbiological presence in wastewater to generate the electrons. The focus of this study is on the effect of organic waste towards the biological CP system. The selected organic wastes are orange peel and pineapple peel. The presence of starch and sugar in the organic waste are promote the microbial growth and increase the performance of biological CP system. The method used to prepare the substrate was based on the previous studies and the CP system was a single chamber system. Current and power density was calculated from the experimental data of the specific weight of substrates and the results was discussed in this study. The weight of substrate are manipulated for each experiment. The statistical analysis was done on the voltage potential output for the selected optimum substrate’s weight and the result was varies for each of organic waste used. The highest voltage potential output by the CP system was 920 mV (20 grams of orange peel) and 1046 mV (40 grams of pineapple peel).","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84129739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Yahya, F. Aziz, Enriquez M.A.O, A. Aizat, J. Jaafar, W. Lau, N. Yusof, W. Salleh, A. Ismail
{"title":"PREPARATION AND CHARACTERIZATION OF LAFEO3 USING DUAL-COMPLEXING AGENTS FOR PHOTODEGRADATION OF HUMIC ACID","authors":"N. Yahya, F. Aziz, Enriquez M.A.O, A. Aizat, J. Jaafar, W. Lau, N. Yusof, W. Salleh, A. Ismail","doi":"10.26480/ees.02.2018.30.34","DOIUrl":"https://doi.org/10.26480/ees.02.2018.30.34","url":null,"abstract":"Humic Acid (HA) is considered as one of the major components that represents a major fraction of dissolved in natural water. Complex mixture of organic compounds on HA lead to the problematic issue for municipal wastewater treatment plants such as undesirable taste, colour to drinking water and fouling in pipe line. The reaction of HA with chlorine during disinfection processes would produce carcinogenic by-products like trihalomethanes. In this study, for the first time, LaFeO3 photocatalyst was successfully synthesized via gel-combustion method using combined glucose/citric acid as chelating agents and was further calcined at 400°C. The photocatalytic activity of samples was investigated by degradation of Humic Acid (HA) in water under visible light irradiation. Results proved that the photocatalytic degradation of HA is dependent on the catalyst dosage, initial concentration of HA, and oxygen availability in the aeration. The photocatalytic degradation also was enhanced by high surface area of synthesized LaFeO3 obtained by amorphous structure. Overall, the percentage removal of HA by varying the catalyst dosage are in the order of 88%, 90%, 98% and 97% for 0.6 g/L, 0.8 g/L, 1.0 g/L, and 1.2 g/L respectively for an irradiation period of 120 minutes. Next, the removal of HA by manipulating its initial concentration are 98%, 90%, 85% and 86% with respect to 10 g/L, 20 g/L, 30 g/L and 40 g/L taken for 120 minutes. Overall, the optimal operational parameters for the removal of HA of catalyst dosage is 1.0 g/L performing at 98%, for initial concentration of HA which was removed efficiently at 97% is 10 g/L and via aeration in this study was about 93%, after 120 min of irradiation times.","PeriodicalId":12034,"journal":{"name":"Environment & Ecosystem Science","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86404263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}