EPJ Data Science最新文献

筛选
英文 中文
Evaluating Twitter’s algorithmic amplification of low-credibility content: an observational study 评估 Twitter 对低可信度内容的算法放大:一项观察研究
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-03-07 DOI: 10.1140/epjds/s13688-024-00456-3
Giulio Corsi
{"title":"Evaluating Twitter’s algorithmic amplification of low-credibility content: an observational study","authors":"Giulio Corsi","doi":"10.1140/epjds/s13688-024-00456-3","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00456-3","url":null,"abstract":"<p>Artificial intelligence (AI)-powered recommender systems play a crucial role in determining the content that users are exposed to on social media platforms. However, the behavioural patterns of these systems are often opaque, complicating the evaluation of their impact on the dissemination and consumption of disinformation and misinformation. To begin addressing this evidence gap, this study presents a measurement approach that uses observed digital traces to infer the status of algorithmic amplification of low-credibility content on Twitter over a 14-day period in January 2023. Using an original dataset of ≈ 2.7 million posts on COVID-19 and climate change published on the platform, this study identifies tweets sharing information from low-credibility domains, and uses a bootstrapping model with two stratifications, a tweet’s engagement level and a user’s followers level, to compare any differences in impressions generated between low-credibility and high-credibility samples. Additional stratification variables of toxicity, political bias, and verified status are also examined. This analysis provides valuable observational evidence on whether the Twitter algorithm favours the visibility of low-credibility content, with results indicating that, on aggregate, tweets containing low-credibility URL domains perform better than tweets that do not across both datasets. However, this effect is largely attributable to a difference in high-engagement, high-followers tweets, which are very impactful in terms of impressions generation, and are more likely receive amplified visibility when containing low-credibility content. Furthermore, high toxicity tweets and those with right-leaning bias see heightened amplification, as do low-credibility tweets from verified accounts. Ultimately, this suggests that Twitter’s recommender system may have facilitated the diffusion of false content by amplifying the visibility of low-credibility content with high-engagement generated by very influential users.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"27 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The right to audit and power asymmetries in algorithm auditing 审计权与算法审计中的权力不对称
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-03-07 DOI: 10.1140/epjds/s13688-024-00454-5
Aleksandra Urman, Ivan Smirnov, Jana Lasser
{"title":"The right to audit and power asymmetries in algorithm auditing","authors":"Aleksandra Urman, Ivan Smirnov, Jana Lasser","doi":"10.1140/epjds/s13688-024-00454-5","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00454-5","url":null,"abstract":"<p>In this paper, we engage with and expand on the keynote talk about the “Right to Audit” given by Prof. Christian Sandvig at the International Conference on Computational Social Science 2021 through a critical reflection on power asymmetries in the algorithm auditing field. We elaborate on the challenges and asymmetries mentioned by Sandvig — such as those related to legal issues and the disparity between early-career and senior researchers. We also contribute a discussion of the asymmetries that were not covered by Sandvig but that we find critically important: those related to other disparities between researchers, incentive structures related to the access to data from companies, targets of auditing and users and their rights. We also discuss the implications these asymmetries have for algorithm auditing research such as the Western-centrism and the lack of the diversity of perspectives. While we focus on the field of algorithm auditing specifically, we suggest some of the discussed asymmetries affect Computational Social Science more generally and need to be reflected on and addressed.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"19 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The simpliciality of higher-order networks 高阶网络的简单性
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-03-07 DOI: 10.1140/epjds/s13688-024-00458-1
Nicholas W. Landry, Jean-Gabriel Young, Nicole Eikmeier
{"title":"The simpliciality of higher-order networks","authors":"Nicholas W. Landry, Jean-Gabriel Young, Nicole Eikmeier","doi":"10.1140/epjds/s13688-024-00458-1","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00458-1","url":null,"abstract":"<p>Higher-order networks are widely used to describe complex systems in which interactions can involve more than two entities at once. In this paper, we focus on inclusion within higher-order networks, referring to situations where specific entities participate in an interaction, and subsets of those entities also interact with each other. Traditional modeling approaches to higher-order networks tend to either not consider inclusion at all (e.g., hypergraph models) or explicitly assume perfect and complete inclusion (e.g., simplicial complex models). To allow for a more nuanced assessment of inclusion in higher-order networks, we introduce the concept of “simpliciality” and several corresponding measures. Contrary to current modeling practice, we show that empirically observed systems rarely lie at either end of the simpliciality spectrum. In addition, we show that generative models fitted to these datasets struggle to capture their inclusion structure. These findings suggest new modeling directions for the field of higher-order network science.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"62 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early warning signals for stock market crashes: empirical and analytical insights utilizing nonlinear methods 股市崩盘的预警信号:利用非线性方法的经验和分析见解
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-03-05 DOI: 10.1140/epjds/s13688-024-00457-2
Shijia Song, Handong Li
{"title":"Early warning signals for stock market crashes: empirical and analytical insights utilizing nonlinear methods","authors":"Shijia Song, Handong Li","doi":"10.1140/epjds/s13688-024-00457-2","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00457-2","url":null,"abstract":"<p>This study introduces a comprehensive framework grounded in recurrence analysis, a tool of nonlinear dynamics, to detect potential early warning signals (EWS) for imminent phase transitions in financial systems, with the primary goal of anticipating severe financial crashes. We first conduct a simulation experiment to demonstrate that the indicators based on multiplex recurrence networks (MRNs), namely the average mutual information and the average edge overlap, can indicate state transitions in complex systems. Subsequently, we consider the constituent stocks of the China’s and the U.S. stock markets as empirical subjects, and establish MRNs based on multidimensional returns to monitor the nonlinear dynamics of market through the corresponding the indicators and topological structures. Empirical findings indicate that the primary indicators of MRNs offer valuable insights into significant financial events or periods of extreme instability. Notably, average mutual information demonstrates promise as an effective EWS for forecasting forthcoming financial crashes. An in-depth discussion and elucidation of the theoretical underpinnings for employing indicators of MRNs as EWS, the differences in indicator effectiveness, and the possible reasons for variations in the performance of the EWS across the two markets are provided. This paper contributes to the ongoing discourse on early warning extreme market volatility, emphasizing the applicability of recurrence analysis in predicting financial crashes.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher-order structures of local collaboration networks are associated with individual scientific productivity 地方合作网络的高阶结构与个人科学生产力相关联
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-02-28 DOI: 10.1140/epjds/s13688-024-00453-6
Wenlong Yang, Yang Wang
{"title":"Higher-order structures of local collaboration networks are associated with individual scientific productivity","authors":"Wenlong Yang, Yang Wang","doi":"10.1140/epjds/s13688-024-00453-6","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00453-6","url":null,"abstract":"<p>The prevalence of teamwork in contemporary science has raised new questions about collaboration networks and the potential impact on research outcomes. Previous studies primarily focused on pairwise interactions between scientists when constructing collaboration networks, potentially overlooking group interactions among scientists. In this study, we introduce a higher-order network representation using algebraic topology to capture multi-agent interactions, i.e., simplicial complexes. Our main objective is to investigate the influence of higher-order structures in local collaboration networks on the productivity of the focal scientist. Leveraging a dataset comprising more than 3.7 million scientists from the Microsoft Academic Graph, we uncover several intriguing findings. Firstly, we observe an inverted U-shaped relationship between the number of disconnected components in the local collaboration network and scientific productivity. Secondly, there is a positive association between the presence of higher-order loops and individual scientific productivity, indicating the intriguing role of higher-order structures in advancing science. Thirdly, these effects hold across various scientific domains and scientists with different impacts, suggesting strong generalizability of our findings. The findings highlight the role of higher-order loops in shaping the development of individual scientists, thus may have implications for nurturing scientific talent and promoting innovative breakthroughs.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical computational social science 批判性计算社会科学
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-02-26 DOI: 10.1140/epjds/s13688-023-00433-2
Sarah Shugars
{"title":"Critical computational social science","authors":"Sarah Shugars","doi":"10.1140/epjds/s13688-023-00433-2","DOIUrl":"https://doi.org/10.1140/epjds/s13688-023-00433-2","url":null,"abstract":"<p>In her 2021 IC2S2 keynote talk, “Critical Data Theory,” Margaret Hu builds off Critical Race Theory, privacy law, and big data surveillance to grapple with questions at the intersection of big data and legal jurisprudence. As a legal scholar, Hu’s work focuses primarily on issues of governance and regulation—examining the legal and constitutional impact of modern data collection and analysis. Yet, her call for Critical Data Theory has important implications for the field of Computational Social Science (CSS) as a whole. In this article, I therefore reflect on Hu’s conception of Critical Data Theory and its broader implications for CSS research. Specifically, I’ll consider the ramifications of her work for the scientific community—exploring how we as researchers should think about the ethics and realities of the data which forms the foundations of our work.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"57 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139980944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinking spatially in computational social science 计算社会科学中的空间思维
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-02-26 DOI: 10.1140/epjds/s13688-023-00443-0
{"title":"Thinking spatially in computational social science","authors":"","doi":"10.1140/epjds/s13688-023-00443-0","DOIUrl":"https://doi.org/10.1140/epjds/s13688-023-00443-0","url":null,"abstract":"<h3>Abstract</h3> <p>Deductive and theory-driven research starts by asking questions. Finding tentative answers to these questions in the literature is next. It is followed by gathering, preparing and modelling relevant data to empirically test these tentative answers. Inductive research, on the other hand, starts with data representation and finding general patterns in data. Ahn suggested, in his keynote speech at the seventh International Conference on Computational Social Science (IC<sup>2</sup>S<sup>2</sup>) 2021, that the way this data is represented could shape our understanding and the type of answers we find for the questions. He discussed that specific representation learning approaches enable a meaningful embedding space and could allow spatial thinking and broaden computational imagination. In this commentary, I summarize Ahn’s keynote and related publications, provide an overview of the use of spatial metaphor in sociology, discuss how such representation learning can help both inductive and deductive research, propose future avenues of research that could benefit from spatial thinking, and pose some still open questions.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charting mobility patterns in the scientific knowledge landscape 描绘科学知识领域的流动模式
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-02-20 DOI: 10.1140/epjds/s13688-024-00451-8
{"title":"Charting mobility patterns in the scientific knowledge landscape","authors":"","doi":"10.1140/epjds/s13688-024-00451-8","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00451-8","url":null,"abstract":"<h3>Abstract</h3> <p>From small steps to great leaps, metaphors of spatial mobility abound to describe discovery processes. Here, we ground these ideas in formal terms by systematically studying mobility patterns in the scientific knowledge landscape. We use low-dimensional embedding techniques to create a knowledge space made up of 1.5 million articles from the fields of physics, computer science, and mathematics. By analyzing the publication histories of individual researchers, we discover patterns of scientific mobility that closely resemble physical mobility. In aggregate, the trajectories form mobility flows that can be described by a gravity model, with jumps more likely to occur in areas of high density and less likely to occur over longer distances. We identify two types of researchers from their individual mobility patterns: interdisciplinary <em>explorers</em> who pioneer new fields, and <em>exploiters</em> who are more likely to stay within their specific areas of expertise. Our results suggest that spatial mobility analysis is a valuable tool for understanding the evolution of science.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"17 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptocurrency co-investment network: token returns reflect investment patterns 加密货币联合投资网络:代币回报反映投资模式
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-02-20 DOI: 10.1140/epjds/s13688-023-00446-x
Luca Mungo, Silvia Bartolucci, Laura Alessandretti
{"title":"Cryptocurrency co-investment network: token returns reflect investment patterns","authors":"Luca Mungo, Silvia Bartolucci, Laura Alessandretti","doi":"10.1140/epjds/s13688-023-00446-x","DOIUrl":"https://doi.org/10.1140/epjds/s13688-023-00446-x","url":null,"abstract":"<p>Since the introduction of Bitcoin in 2009, the dramatic and unsteady evolution of the cryptocurrency market has also been driven by large investments by traditional and cryptocurrency-focused hedge funds. Notwithstanding their critical role, our understanding of the relationship between institutional investments and the evolution of the cryptocurrency market has remained limited, also due to the lack of comprehensive data describing investments over time. In this study, we present a quantitative study of cryptocurrency institutional investments based on a dataset collected for 1324 currencies in the period between 2014 and 2022 from Crunchbase, one of the largest platforms gathering business information. We show that the evolution of the cryptocurrency market capitalization is highly correlated with the size of institutional investments, thus confirming their important role. Further, we find that the market is dominated by the presence of a group of prominent investors who tend to specialise by focusing on particular technologies. Finally, studying the co-investment network of currencies that share common investors, we show that assets with shared investors tend to be characterized by similar market behaviour. Our work sheds light on the role played by institutional investors and provides a basis for further research on their influence in the cryptocurrency ecosystem.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"23 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the systemic importance and systemic vulnerability of financial institutions based on portfolio similarity correlation network 基于投资组合相似性相关网络识别金融机构的系统重要性和系统脆弱性
IF 3.6 2区 计算机科学
EPJ Data Science Pub Date : 2024-01-31 DOI: 10.1140/epjds/s13688-024-00449-2
Manjin Shao, Hong Fan
{"title":"Identifying the systemic importance and systemic vulnerability of financial institutions based on portfolio similarity correlation network","authors":"Manjin Shao, Hong Fan","doi":"10.1140/epjds/s13688-024-00449-2","DOIUrl":"https://doi.org/10.1140/epjds/s13688-024-00449-2","url":null,"abstract":"<p>The indirect correlation among financial institutions, stemming from similarities in their portfolios, is a primary driver of systemic risk. However, most existing research overlooks the influence of portfolio similarity among various types of financial institutions on this risk. Therefore, we construct the network of portfolio similarity correlations among different types of financial institutions, based on measurements of portfolio similarity. Utilizing the expanded fire sale contagion model, we offer a comprehensive assessment of systemic risk for Chinese financial institutions. Initially, we introduce indicators for systemic risk, systemic importance, and systemic vulnerability. Subsequently, we examine the cross-sectional and time-series characteristics of these institutions’ systemic importance and vulnerability within the context of the portfolio similarity correlation network. Our empirical findings reveal a high degree of portfolio similarity between banks and insurance companies, contrasted with lower similarity between banks and securities firms. Moreover, when considering the portfolio similarity correlation network, both the systemic importance and vulnerability of Chinese banks and insurance companies surpass those of securities firms in both cross-sectional and temporal dimensions. Notably, our analysis further illustrates that a financial institution’s systemic importance and vulnerability are strongly and positively associated with the magnitude of portfolio similarity between that institution and others.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信