ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)最新文献

筛选
英文 中文
A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm 完全集成的28纳米蓝牙低功耗发射器,在3dBm时系统效率为36%
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-18 DOI: 10.1109/ESSCIRC.2015.7313901
F. Kuo, M. Babaie, H. Chen, K. Yen, Jinn-Yeh Chien, Lan-chou Cho, F. Kuo, C. Jou, F. Hsueh, R. Staszewski
{"title":"A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm","authors":"F. Kuo, M. Babaie, H. Chen, K. Yen, Jinn-Yeh Chien, Lan-chou Cho, F. Kuo, C. Jou, F. Hsueh, R. Staszewski","doi":"10.1109/ESSCIRC.2015.7313901","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313901","url":null,"abstract":"We propose a new transmitter (TX) architecture for ultra-low power radios. An all-digital PLL employs a digitally controlled oscillator with switching current sources to reduce supply voltage and power without sacrificing its phase noise and startup margins. It also reduces 1/f noise allowing the ADPLL, after settling, to reduce its sampling rate or shut it off entirely during direct DCO data modulation. The switching power amplifier integrates its matching network while operating in class-E/F2 to maximally enhance its efficiency. The transmitter is realized in 28nm CMOS and satisfies all metal density and other manufacturing rules. It consumes 3.6 mW/5.5mW while delivering 0dBm/3 dBm RF power in Bluetooth Low-Energy.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86763113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
In-band full-duplex transceiver technology for 5G mobile networks 5G移动网络带内全双工收发器技术
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-14 DOI: 10.1109/ESSCIRC.2015.7313834
B. Debaillie, B. V. Liempd, B. Hershberg, J. Craninckx, K. Rikkinen, D. V. D. Broek, E. Klumperink, B. Nauta
{"title":"In-band full-duplex transceiver technology for 5G mobile networks","authors":"B. Debaillie, B. V. Liempd, B. Hershberg, J. Craninckx, K. Rikkinen, D. V. D. Broek, E. Klumperink, B. Nauta","doi":"10.1109/ESSCIRC.2015.7313834","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313834","url":null,"abstract":"In-band full-duplex is a promising air interface technique to tackle several of the key challenges of next generation (5G) mobile networks. Simultaneous transmission and reception in the same frequency band increases the throughput and spectral efficiency, and reduces the air interface delay. Its implementation in 5G systems, however, restrains the full-duplex transceiver design requirements. Two analog integrated circuit solutions are presented and evaluated in the frame of 5G applications. The first design is a self-interference cancelling front-end implemented in 65nm CMOS, and the second design is an electrical-balance duplexer implemented in 0.18μm RF SOI CMOS. Both designs are attractive in the context of 5G; they allow dense integration, are configurable to support alternative and legacy standards, are compatible with conventional antenna(s), and they provide an attractive full-duplex performance for wireless communications.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80081546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
A 5-GHz subharmonically injection-locked all-digital PLL with complementary switched injection 具有互补开关注入的5ghz次谐波锁相全数字锁相环
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313908
Sung-Yong Cho, Sungwoo Kim, Min-Seong Choo, Jinhyung Lee, H. Ko, Sungchun Jang, Sang-Hyeok Chu, W. Bae, Yoonsoo Kim, D. Jeong
{"title":"A 5-GHz subharmonically injection-locked all-digital PLL with complementary switched injection","authors":"Sung-Yong Cho, Sungwoo Kim, Min-Seong Choo, Jinhyung Lee, H. Ko, Sungchun Jang, Sang-Hyeok Chu, W. Bae, Yoonsoo Kim, D. Jeong","doi":"10.1109/ESSCIRC.2015.7313908","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313908","url":null,"abstract":"In this paper, a low-phase-noise subharmonically injection-locked all-digital phase-locked loop (PLL) with simplified overall architecture based on a complementary switched injection technique and a sub-sampling bang-bang detector (SSBBPD) is presented. The proposed PLL does not require a timing calibration circuit for phase alignment between the PLL and injection loops. Moreover, instead of a pulse generator, a complementary switched injection technique is used to achieve high frequency (e.g. 5 GHz) injection-locked oscillator. The proposed PLL was implemented in a 65-nm CMOS process on an active area of 0.06mm2, with measurement result showing that it achieves a 484-fs integrated RMS jitter from 1 kHz to 40 MHz at a 5-GHz output frequency while consuming 15.4 mW.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74960596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A 106.7-dB DR, 390-μW CT 3rd-order ΣΔ modulator for MEMS microphones 用于MEMS麦克风的106.7 db DR, 390 μ w CT三阶ΣΔ调制器
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313864
C. D. Berti, P. Malcovati, L. Crespi, A. Baschirotto
{"title":"A 106.7-dB DR, 390-μW CT 3rd-order ΣΔ modulator for MEMS microphones","authors":"C. D. Berti, P. Malcovati, L. Crespi, A. Baschirotto","doi":"10.1109/ESSCIRC.2015.7313864","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313864","url":null,"abstract":"A 3<sup>rd</sup>-order continuous-time ΣΔ modulator for MEMS microphones in 0.16-μm CMOS technology achieves 106.7-dB DR and 93.2-dB peak SNDR, consuming 390 μW from a 1.6-V power supply and occupying an area of 0.21 mm<sup>2</sup>. The ΣΔ modulator, based on a feedforward architecture, uses only two operational amplifiers for achieving the 3<sup>rd</sup>-order loop-filter transfer function, a 15-level quantizer, and a feedback DAC with three-level current-steering elements, which minimizes the noise contribution at small input signal, in order to achieve a DR > 100 dB with the largest reported Schreier FoM (184 dB).","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89838498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Suppressing output overshoot voltage technique with 47.1mW/μs power-recycling rate and 93% peak efficiency DC-DC converter for multi-core processors 具有47.1mW/μs功率回收率和93%峰值效率的多核处理器DC-DC变换器抑制输出过调电压技术
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313860
M. Chien, Wen-Hau Yang, Ying-Wei Chou, Hsin-Chieh Chen, Wei-Chung Chen, Ke-Horng Chen, Chinder Wey, Shin-Chi Lai, Ying-Hsi Lin, Chao-Cheng Lee, Jian-Ru Lin, Tsung-Yen Tsai, Hsin-Yu Luo
{"title":"Suppressing output overshoot voltage technique with 47.1mW/μs power-recycling rate and 93% peak efficiency DC-DC converter for multi-core processors","authors":"M. Chien, Wen-Hau Yang, Ying-Wei Chou, Hsin-Chieh Chen, Wei-Chung Chen, Ke-Horng Chen, Chinder Wey, Shin-Chi Lai, Ying-Hsi Lin, Chao-Cheng Lee, Jian-Ru Lin, Tsung-Yen Tsai, Hsin-Yu Luo","doi":"10.1109/ESSCIRC.2015.7313860","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313860","url":null,"abstract":"Conversion efficiency degrades in case of heavy-to-light loading change since state-of-art overshoot reduction techniques simply dissipate redundant energy at the output of buck DC-DC converter. Thus, the proposed dual-mode ripple-recovered compensator (D-RRC) and multi-phase suppressing output overshoot voltage (MP-SOOV) technique uses 33nH bondwire inductance to recycle energy and provides 47.1mW/μs ultra-fast power-recycling rate to suppress overshoot voltage from 507mV to 95mV with 81.3% improvement when load changes from 1.7A to 0.3A. Experimental results show 93% high efficiency and highspeed operation with only tens of nano second on-time period.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79127504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An 8.2 GHz triple coupling low-phase-noise class-F QVCO in 65nm CMOS 8.2 GHz三耦合低相位噪声f级65nm CMOS QVCO
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313844
Haikun Jia, B. Chi, Zhihua Wang
{"title":"An 8.2 GHz triple coupling low-phase-noise class-F QVCO in 65nm CMOS","authors":"Haikun Jia, B. Chi, Zhihua Wang","doi":"10.1109/ESSCIRC.2015.7313844","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313844","url":null,"abstract":"An 8.2 GHz low-phase-noise Class-F quadrature voltage controlled oscillator (QVCO) is presented. With the proposed triple coupling technique, the oscillation frequency of the QVCO is only determined by the inter-stage passive matching components, and the introduced third harmonic at the drain of the transistors help form the approximately square voltage waveform to achieve low impulse-sensitivity function (ISF) value, which results in good phase noise performance and good quadrature phase accuracy. Implemented in 65nm CMOS, the QVCO shows a measured phase noise of -120.86 dBc/Hz at 1 MHz offset from 7.76 GHz carrier frequency (188.4 dBc/Hz FoM value), and a measured quadrature phase error of 0.72°. The QVCO consumes 10.6-12.3 mW power from one 0.6 V supply and 0.38mm2 active die area.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88287679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A compact 0.135-mW/channel LNA array for piezoelectric ultrasound transducers 用于压电超声换能器的紧凑的0.135 mw /通道LNA阵列
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313913
Chao Chen, Zhao Chen, Z. Chang, M. Pertijs
{"title":"A compact 0.135-mW/channel LNA array for piezoelectric ultrasound transducers","authors":"Chao Chen, Zhao Chen, Z. Chang, M. Pertijs","doi":"10.1109/ESSCIRC.2015.7313913","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313913","url":null,"abstract":"This paper presents a power- and area-efficient 9-channel LNA array for piezoelectric ultrasound transducers to enable real-time 3D imaging with miniature endoscopic and catheter-based probes. In view of the relatively low impedance of piezoelectric transducers, the LNA is implemented as a capacitive feedback voltage amplifier, rather than a trans-impedance amplifier, to achieve a better noise-power trade-off. The use of a current-efficient inverter-based OTA with optimized bias scheme and dual-rail regulation further improves the power efficiency of the LNA while keeping the area compact: 0.01 mm2 per channel. Electrical and acoustic measurement results show that the proposed LNA achieves a 0.6 mPa/√Hz input-referred noise at 4 MHz while consuming only 0.135 mW, which represents a noise efficiency 2.5 × better than the state-of-the-art.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88832436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
A 3.1–10.6GHz wavelet-based dual-resolution spectrum sensing with harmonic rejection mixers 基于3.1-10.6GHz谐波抑制混频器的小波双分辨率频谱传感
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313887
Nam-Seog Kim, J. Rabaey
{"title":"A 3.1–10.6GHz wavelet-based dual-resolution spectrum sensing with harmonic rejection mixers","authors":"Nam-Seog Kim, J. Rabaey","doi":"10.1109/ESSCIRC.2015.7313887","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313887","url":null,"abstract":"A triple-channel wavelet-based dual-resolution spectrum sensor fabricated with 1V 65nm CMOS technology provides 3.1-10.6GHz range of spectrum sensing bandwidth with <;6.4mW/GHz efficiency. Dual-resolution cooperative sensing with two adjacent channels eliminates fine detection process, which leads to <;0.4msec of total sensing time. The spectrum sensor achieves the minimum detection sensitivity of -75dBm and out of band rejection of <;-45dBc by exploiting triangular wavelet with LPF. 3.1-5GHz harmonic rejection mixers suppress third harmonic to -32dBc. Die area is 2.75mm2 with on-die PLLs.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86083079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A fully integrated 30GHz 16-QAM single-channel phased array transmitter with 5.9% EVM at 6dB back-off 完全集成的30GHz 16-QAM单通道相控阵发射机,在6dB回退时EVM为5.9%
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313836
Ying Chen, Y. Pei, D. Leenaerts
{"title":"A fully integrated 30GHz 16-QAM single-channel phased array transmitter with 5.9% EVM at 6dB back-off","authors":"Ying Chen, Y. Pei, D. Leenaerts","doi":"10.1109/ESSCIRC.2015.7313836","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313836","url":null,"abstract":"A fully-integrated 30GHz single-channel phased array transmitter is demonstrated in a 0.25-μm SiGe:C BiCMOS process. The integration covers the baseband I/Q modulation up to the RF output, including a 40GHz PLL with an ultra-low phase noise. A phase shift resolution of 10° and an amplitude resolution of 5-bit are achieved with an LO phase-oversampling vector modulator. The CSP packaged transmitter delivers a saturation output power of 10~13dBm over 27.6~30.3GHz. The 40GHz PLL achieves a measured integrated phase noise of 1.5° RMS from 100Hz to 10MHz and has a reference spur <;-70dBc. The transmitter chip achieves an EVM of 5.9% at 6dB back-off for 40-Mb/s 16-QAM modulation. The proposed transmitter is suitable for Ka-band VSAT and back-haul point-to-point applications.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77545412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Intelligent task scheduler with high throughput NoC for real-time mobile object recognition SoC 具有高吞吐量NoC的智能任务调度程序,用于实时移动目标识别SoC
ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC) Pub Date : 2015-09-01 DOI: 10.1109/ESSCIRC.2015.7313838
K. Lee, Junyoung Park, Injoon Hong, H. Yoo
{"title":"Intelligent task scheduler with high throughput NoC for real-time mobile object recognition SoC","authors":"K. Lee, Junyoung Park, Injoon Hong, H. Yoo","doi":"10.1109/ESSCIRC.2015.7313838","DOIUrl":"https://doi.org/10.1109/ESSCIRC.2015.7313838","url":null,"abstract":"An Intelligent Task Scheduler (ITS) together with Congestion-avoiding Flexible Routing (CAFeR) are proposed to minimize network congestion of network-on-chip (NoC), so as to improve the throughput of multi-core system for fast and accurate object recognition. The ITS predicts the communication pattern of next frame and intelligently assigns tasks to consumer cores. It also adaptively controls buffer threshold of each link in NoC to support CAFeR to enhance packet transaction throughput, which enables packets to communicate with less congestion. Thanks to the proposed ITS with 91.4% of prediction accuracy and CAFeR, the overall latency is reduced by 50.2%.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81830053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信