O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay
{"title":"Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery","authors":"O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay","doi":"10.18321/ectj1522","DOIUrl":"https://doi.org/10.18321/ectj1522","url":null,"abstract":"With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139257699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Caputo, P. Calandra, V. Loise, M. Porto, A. Le Pera, A.A. Abe, B. Teltayev, M. L. Luprano, M. Alfè, V. Gargiulo, G. Ruoppolo, C. Oliviero Rossi
{"title":"Physical Chemistry Supports Circular Economy: Toward a Viable Use of Products from the Pyrolysis of a Refuse-Derived Fuel and Granulated Scrap Tire Rubber as Bitumen Additives","authors":"P. Caputo, P. Calandra, V. Loise, M. Porto, A. Le Pera, A.A. Abe, B. Teltayev, M. L. Luprano, M. Alfè, V. Gargiulo, G. Ruoppolo, C. Oliviero Rossi","doi":"10.18321/ectj1520","DOIUrl":"https://doi.org/10.18321/ectj1520","url":null,"abstract":"The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139259214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A.D. Kudaibergen, Zh.B. Kuspanov, A.N. Issadykov, R.E. Beisenov, Z.A. Mansurov, M. Yeleuov, Ch.B. Daulbayev
{"title":"Synthesis, Structure, and Energetic Characteristics of Perovskite Photocatalyst SrTiO3: an Experimental and DFT Study","authors":"A.D. Kudaibergen, Zh.B. Kuspanov, A.N. Issadykov, R.E. Beisenov, Z.A. Mansurov, M. Yeleuov, Ch.B. Daulbayev","doi":"10.18321/ectj1516","DOIUrl":"https://doi.org/10.18321/ectj1516","url":null,"abstract":"SrTiO3-based photocatalysts have become widely used due to their excellent properties such as high thermal stability, photocorrosion resistance, and stable structure that can be modified by doping and making composites. In this work, SrTiO3 powder was prepared from Sr(NO3)2 and TiO2 precursors by a simple chemical precipitation method followed by calcination. It was determined that calcination at 900 °C followed by treatment in nitric acid solution produced cubic SrTiO3 particles without the presence of any impurities. In addition, structural, morphology, and energetic characterization using experimental and theoretical aspects are presented. Within the framework of density functional theory, the electronic properties of SrTiO3 have been investigated in the Quantum ESPRESSO software package using the PBE functional under the generalized gradient approximation (GGA). The band structure and density of states were obtained, and the width of the bandgap was determined.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139255983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Arutyunov, I. Sedov, V. Savchenko, A. Nikitin, A. Arutyunov
{"title":"Utilization of Waste Hydrocarbon Gases","authors":"V. Arutyunov, I. Sedov, V. Savchenko, A. Nikitin, A. Arutyunov","doi":"10.18321/ectj1515","DOIUrl":"https://doi.org/10.18321/ectj1515","url":null,"abstract":"A variety of natural and anthropogenic sources of hydrocarbon gases make a significant contribution to the global emission of greenhouse gases. Reducing the anthropogenic emission of industrial hydrocarbon gases is impossible without new technologies that would allow their cost-effective utilization. The paper describes a number of new promising technologies based on autothermal gas-phase processes of partial oxidation and oxidative cracking of various hydrocarbons, such as associated petroleum gases, coalbed methane, refinery gases, and biogas, which open up prospects for a significant reduction in their flaring or emission into the atmosphere. Among the technologies under consideration are those involving their processing for subsequent use in the energy sector and low-tonnage production of various demanded chemicals.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139259141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Е. Matus, M. Kerzhentsev, A. Nikitin, S. Sozinov, Z. R. Ismagilov
{"title":"Promising Directions in Chemical Processing of Methane from Coal Industry. Part 2. Development of Catalysts","authors":"Е. Matus, M. Kerzhentsev, A. Nikitin, S. Sozinov, Z. R. Ismagilov","doi":"10.18321/ectj1500","DOIUrl":"https://doi.org/10.18321/ectj1500","url":null,"abstract":"For the creation of new highly active and stable catalysts for the complete processing of coal methane, different methods for designing catalytic systems are being applied, including the use of the effects of mutual strengthening of the action of metals and modifying the composition of the supports. Different chemical synthesis approaches were considered for obtaining supported Ni nanoparticles with controllable compositions and sizes. For the citrate sol-gel method, it was found that with an increase in the citric acid/metals molar ratio from 0 to 1, the textural characteristics (specific surface area: 76→100 m2/g) of Сe0.2Ni0.8O1.2/Al2O3 catalysts, dispersion (average particle size: 10→5 nm) and reducibility (temperature of maximum H2 consumption: 580→530 °C) of the Ni-containing species improved. For calcined in air at 500 °C catalysts it was shown that Ni2+ cations stabilized in NiO or in the Ce-Ni-O solid solution. The proportion of the latter was maximum at a citric acid/metal molar ratio equal to 0.25, which was chosen as the optimal value in the investigated range of 0.25–1.0. An increase in the calcination temperature from 500 to 900 °C contributes to the stabilization of Ni2+ in the Al-Ni-O solid solution, which leads to a slight deterioration in the textural properties of the samples and a significant difficulty in their reducibility. After reductive activation at 800 °C of Сe0.2Ni0.8O1.2/Al2O3 samples, catalytically active metal Nio nanoparticles of ~7 nm in size were formed for effective reforming of coal industry methane into synthesis gas.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67575058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Facile Synthesis and Investigation of Na8[ZrErNd(MoO4)9] Complex","authors":"L. G. Nersisyan, H. Petrosyan","doi":"10.18321/ectj1501","DOIUrl":"https://doi.org/10.18321/ectj1501","url":null,"abstract":"The continuous growth of rare earth elements (REE) value and the widespread use of molybdates in medicine and various industries and technologies determine the ever-increasing interest in this type of material. In this research, the interactions in the ZrOCl2-Er2Cl3-NdCl3-Na2MoO4-H2O multicomponent system at a temperature of 20 °С were studied by the method of residual concentrations well known as Tananaev’s or so-called apparent volume method. It was shown that a chemical reaction takes place in the system under study, resulting in the formation of a complex molecule that is insoluble in water. A detailed physicochemical study (X-ray diffraction, IR spectroscopy, thermal analysis) of the formed material was carried out. For the first time, it was possible to obtain rare earth element’s molybdates in the form of Na8[ZrErNd(MoO4)9]∙3.86H2O complex material by low cost and low-temperature method.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41676346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Pokryshkin, V. G. Yakunin, A. Efimova, A.A. Elyseev, D. Presnov, V. Savinov, V. Timoshenko
{"title":"Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets","authors":"N. Pokryshkin, V. G. Yakunin, A. Efimova, A.A. Elyseev, D. Presnov, V. Savinov, V. Timoshenko","doi":"10.18321/ectj1497","DOIUrl":"https://doi.org/10.18321/ectj1497","url":null,"abstract":"Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45527696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Karibayev, D. Bekeshov, B. Myrzakhmetov, S. Kalybekkyzy, Y. Wang, Z. Bakenov, A. Mentbayeva
{"title":"Effect of Hydration on the Intermolecular Interaction of Various Quaternary Ammonium Based Head Groups with Hydroxide Ion of Anion Exchange Membrane Studied at the Molecular Level","authors":"M. Karibayev, D. Bekeshov, B. Myrzakhmetov, S. Kalybekkyzy, Y. Wang, Z. Bakenov, A. Mentbayeva","doi":"10.18321/ectj1499","DOIUrl":"https://doi.org/10.18321/ectj1499","url":null,"abstract":"Currently, the main limitation of Anion Exchange Membrane Fuel Cells is related to their low chemical stability under alkaline conditions due to the degradation of quaternary ammonium-based head groups, which lowers the transportation of hydroxide ions as well. The knowledge of the intermolecular interaction of various quaternary ammonium head groups with hydroxide ions is the key to improving hydroxide ion’s diffusivity and chemical stability of various quaternary ammonium-based head groups. Consequently, the intermolecular interaction of hydroxide ions with different quaternary ammonium head groups of anion exchange membranes is investigated at the different hydration levels via classical all-atom Molecular Dynamics and molecular well-tempered MetaDynamics simulation methods in this work. Several quaternary ammonium head groups (a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane, (c) benzyltrimethylammonium, (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium were investigated in detail. Classical all-atom molecular dynamic simulations illustrate that the results of radial distribution function between the nitrogen atoms of six different quaternary ammonium head groups and hydroxide ion are as follows: (a) > (c) ≥ (f) > (d) > (e) > (b). In addition, from the diffusion coefficient values it was found that the mobility of hydroxide ion by quaternary ammonium head group (f) was lower than (c) at the different hydration levels.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44161984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Berikbaikyzy, Y. Sagynbay, G. Turarova, I. Taniguchi, Z. Bakenov, A. Belgibayeva
{"title":"Effect of Pre-Oxidation of Electrospun Polyvinylpyrrolidone-Derived CoxP/C Composite Nanofibers on their Electrochemical Performance as Anode in Lithium-Ion Batteries","authors":"S. Berikbaikyzy, Y. Sagynbay, G. Turarova, I. Taniguchi, Z. Bakenov, A. Belgibayeva","doi":"10.18321/ectj1498","DOIUrl":"https://doi.org/10.18321/ectj1498","url":null,"abstract":"This research studies the effect of pre-oxidation on physical and electrochemical properties of electrospun polyvinylpyrrolidone (PVP)-derived carbon composites of cobalt phosphides by comparing carbonized non-pre-oxidized (NPO) and pre-oxidized (PO) samples used as anode materials for lithium-ion batteries. The X-Ray diffraction (XRD) patterns revealed the formation of CoP and Co2P in both samples while presence of amorphous cobalt metaphosphate for NPO and cobalt phosphate for PO was determined by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of nanofibers was evaluated by cyclic voltammetry and galvanostatic charge-discharge at different current densities. The results showed improved stability at high current densities (344.1 mAh g-1 at 5000 mA g-1), more significant charge capacity (599.6 mAh g-1 at 500 mA g-1) and higher initial Coulombic efficiency (CE%, 61.1%) for PO samples than NPO.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48372865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of C60 Fullerene Nanowhisker–CuS Nanoparticle Composites and Photocatalyst for Rhodamine B Degradation under Blue Light Emitting Diode Irradiation","authors":"S. Ko, H. Chung","doi":"10.18321/ectj1496","DOIUrl":"https://doi.org/10.18321/ectj1496","url":null,"abstract":"The liquid-liquid interfacial precipitation (LLIP) approach was used to synthesize the C60 fullerene nanowhisker (FNW)–CuS nanoparticle composites utilizing a CuS nanoparticle solution, C60-saturated toluene, and isopropyl alcohol (IPA). Powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the product of C60 FNW–CuS nanoparticle composites. These were also utilized to photocatalytic degradation of rhodamine B (RhB) under blue light emitting diode (LED) irradiation at 450 nm. Also, UV–vis spectroscopy was used to confirm the photocatalytic degradation activity of RhB over the C60 FNW–CuS nanoparticle composites. The percentage of photocatalytic degradation of RhB was shown to be 95.148%. The kinetics study for photocatalytic degradation of RhB using C60 FNW–CuS nanoparticle composites followed a pseudo-first-order reaction rate law. C60 FNW–CuS nanoparticle composites as photocatalyst have a rate constant of 4.82×10-2 min-1 at 25 °C.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49119511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}