Weil's Conjecture for Function Fields最新文献

筛选
英文 中文
Frontmatter
Weil's Conjecture for Function Fields Pub Date : 2019-12-31 DOI: 10.1515/9780691184432-fm
{"title":"Frontmatter","authors":"","doi":"10.1515/9780691184432-fm","DOIUrl":"https://doi.org/10.1515/9780691184432-fm","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128024378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter Two. The Formalism of ℓ-adic Sheaves 第二章。-进轴的形式化
Weil's Conjecture for Function Fields Pub Date : 2019-12-31 DOI: 10.1515/9780691184432-002
{"title":"Chapter Two. The Formalism of ℓ-adic Sheaves","authors":"","doi":"10.1515/9780691184432-002","DOIUrl":"https://doi.org/10.1515/9780691184432-002","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116802280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter Four. Computing the Trace of Frobenius 第四章。计算Frobenius的轨迹
Weil's Conjecture for Function Fields Pub Date : 2019-12-31 DOI: 10.1515/9780691184432-004
{"title":"Chapter Four. Computing the Trace of Frobenius","authors":"","doi":"10.1515/9780691184432-004","DOIUrl":"https://doi.org/10.1515/9780691184432-004","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128466264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter Five The Trace Formula for BunG(X) 第五章BunG(X)的迹式
Weil's Conjecture for Function Fields Pub Date : 2019-12-31 DOI: 10.1515/9780691184432-005
{"title":"Chapter Five The Trace Formula for BunG(X)","authors":"","doi":"10.1515/9780691184432-005","DOIUrl":"https://doi.org/10.1515/9780691184432-005","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115635531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter Three. E∞-Structures on ℓ-Adic Cohomology 第三章。l -进上同调上的E∞结构
Weil's Conjecture for Function Fields Pub Date : 2019-12-31 DOI: 10.1515/9780691184432-003
{"title":"Chapter Three. E∞-Structures on ℓ-Adic Cohomology","authors":"","doi":"10.1515/9780691184432-003","DOIUrl":"https://doi.org/10.1515/9780691184432-003","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132677387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E∞-Structures on l-Adic Cohomology l进上同调上的E∞-结构
Weil's Conjecture for Function Fields Pub Date : 2019-02-19 DOI: 10.23943/princeton/9780691182148.003.0003
D. Gaitsgory, J. Lurie
{"title":"E∞-Structures on l-Adic Cohomology","authors":"D. Gaitsgory, J. Lurie","doi":"10.23943/princeton/9780691182148.003.0003","DOIUrl":"https://doi.org/10.23943/princeton/9780691182148.003.0003","url":null,"abstract":"For applications to Weil's conjecture, a version of (3.1) is formulated in the setting of algebraic geometry, where M is replaced by an algebraic curve X (defined over an algebraically closed field k) and E by the classifying stack BG of a smooth affine group scheme over X. This chapter lays the groundwork by constructing an analogue of the functor B.","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127065289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Formalism of l-adic Sheaves l进束的形式主义
Weil's Conjecture for Function Fields Pub Date : 2019-02-19 DOI: 10.23943/princeton/9780691182148.003.0002
D. Gaitsgory, J. Lurie
{"title":"The Formalism of l-adic Sheaves","authors":"D. Gaitsgory, J. Lurie","doi":"10.23943/princeton/9780691182148.003.0002","DOIUrl":"https://doi.org/10.23943/princeton/9780691182148.003.0002","url":null,"abstract":"The ℓ-adic product formula discussed in Chapter 4 will need to make use of analogous structures, which are simply not visible at the level of the triangulated category Dℓ(X). This chapter attempts to remedy the situation by introducing a mathematical object Shvℓ (X), which refines the triangulated category Dℓ (X). This object is not itself a category but instead is an example of an ∞-category, which is referred to as the ∞-category of ℓ-adic sheaves on X. The triangulated category Dℓ (X) can be identified with the homotopy category of Shvℓ (X); in particular, the objects of Dℓ (X) and Shvℓ (X) are the same. However, there is a large difference between commutative algebra objects of Dℓ (X) and commutative algebra objects of the ∞-category Shvℓ (X). We can achieve (b') by viewing the complex B as a commutative algebra of the latter sort.","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117230589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Trace Formula for BunG(X) BunG(X)的轨迹公式
Weil's Conjecture for Function Fields Pub Date : 2019-02-19 DOI: 10.2307/j.ctv4v32qc.7
D. Gaitsgory, J. Lurie
{"title":"The Trace Formula for BunG(X)","authors":"D. Gaitsgory, J. Lurie","doi":"10.2307/j.ctv4v32qc.7","DOIUrl":"https://doi.org/10.2307/j.ctv4v32qc.7","url":null,"abstract":"This chapter aims to prove Theorem 1.4.4.1, which is formulated as follows: Theorem 5.0.0.3, let X be an algebraic curve over F\u0000 q and let G be a smooth affine group scheme over X. Suppose that the fibers of G are connected and that the generic fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the Grothendieck–Lefschetz trace formula. However, Theorem 5.0.0.3 cannot be deduced directly from the Grothendieck–Lefschetz trace formula for global quotient stacks because the moduli stack BunG(X) is usually not quasi-compact. The strategy instead will be to decompose BunG (X) into locally closed substacks BunG(X)[P,ν‎] which are more directly amenable to analysis.","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127535009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Formalism of ℓ-adic Sheaves -进轴的形式化
Weil's Conjecture for Function Fields Pub Date : 2019-02-19 DOI: 10.2307/j.ctv4v32qc.4
{"title":"The Formalism of ℓ-adic Sheaves","authors":"","doi":"10.2307/j.ctv4v32qc.4","DOIUrl":"https://doi.org/10.2307/j.ctv4v32qc.4","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"302 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124303364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
𝔼∞-Structures on ℓ-Adic Cohomology _ -进上同调上的_∞结构
Weil's Conjecture for Function Fields Pub Date : 2019-02-19 DOI: 10.2307/j.ctv4v32qc.5
{"title":"𝔼∞-Structures on ℓ-Adic Cohomology","authors":"","doi":"10.2307/j.ctv4v32qc.5","DOIUrl":"https://doi.org/10.2307/j.ctv4v32qc.5","url":null,"abstract":"","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123208666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信