BunG(X)的轨迹公式

D. Gaitsgory, J. Lurie
{"title":"BunG(X)的轨迹公式","authors":"D. Gaitsgory, J. Lurie","doi":"10.2307/j.ctv4v32qc.7","DOIUrl":null,"url":null,"abstract":"This chapter aims to prove Theorem 1.4.4.1, which is formulated as follows: Theorem 5.0.0.3, let X be an algebraic curve over F\n q and let G be a smooth affine group scheme over X. Suppose that the fibers of G are connected and that the generic fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the Grothendieck–Lefschetz trace formula. However, Theorem 5.0.0.3 cannot be deduced directly from the Grothendieck–Lefschetz trace formula for global quotient stacks because the moduli stack BunG(X) is usually not quasi-compact. The strategy instead will be to decompose BunG (X) into locally closed substacks BunG(X)[P,ν‎] which are more directly amenable to analysis.","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Trace Formula for BunG(X)\",\"authors\":\"D. Gaitsgory, J. Lurie\",\"doi\":\"10.2307/j.ctv4v32qc.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter aims to prove Theorem 1.4.4.1, which is formulated as follows: Theorem 5.0.0.3, let X be an algebraic curve over F\\n q and let G be a smooth affine group scheme over X. Suppose that the fibers of G are connected and that the generic fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the Grothendieck–Lefschetz trace formula. However, Theorem 5.0.0.3 cannot be deduced directly from the Grothendieck–Lefschetz trace formula for global quotient stacks because the moduli stack BunG(X) is usually not quasi-compact. The strategy instead will be to decompose BunG (X) into locally closed substacks BunG(X)[P,ν‎] which are more directly amenable to analysis.\",\"PeriodicalId\":117918,\"journal\":{\"name\":\"Weil's Conjecture for Function Fields\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weil's Conjecture for Function Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv4v32qc.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weil's Conjecture for Function Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv4v32qc.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章的目的是证明定理1.4.4.1,其表述如下:定理5.0.0.3,设X是F q上的代数曲线,设G是X上的光滑仿射群格式,设G的光纤是连通的,且G的一般光纤是半单光纤。则模栈BunG(X)满足Grothendieck-Lefschetz迹公式。然而,定理5.0.0.3不能直接从全局商栈的Grothendieck-Lefschetz迹公式中推导出来,因为模栈BunG(X)通常不是拟紧的。取而代之的策略是将BunG(X)分解为局部封闭的子堆栈BunG(X)[P,ν],这些子堆栈更直接地适合于分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Trace Formula for BunG(X)
This chapter aims to prove Theorem 1.4.4.1, which is formulated as follows: Theorem 5.0.0.3, let X be an algebraic curve over F q and let G be a smooth affine group scheme over X. Suppose that the fibers of G are connected and that the generic fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the Grothendieck–Lefschetz trace formula. However, Theorem 5.0.0.3 cannot be deduced directly from the Grothendieck–Lefschetz trace formula for global quotient stacks because the moduli stack BunG(X) is usually not quasi-compact. The strategy instead will be to decompose BunG (X) into locally closed substacks BunG(X)[P,ν‎] which are more directly amenable to analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信