{"title":"Simultaneous Removal of Ammonium and Nitrite in Aqueous Suspensions of Ferric Tannate Powder by Adsorption and Catalysis","authors":"Zhu Liang, Mingluo Zhou, Zhou Xu, Yuankun Yang","doi":"10.1089/ees.2023.0012","DOIUrl":"https://doi.org/10.1089/ees.2023.0012","url":null,"abstract":"Ferric tannate (TA-Fe3+) has the potential to transform ammonium (NH4+) and nitrite (NO2−) into nitrogen gas (N2) through adsorption and catalysis. Few reports have given detailed account of different adsorption behavior for NH4+ and NO2−, which is important to develop the potential of the material. TA-Fe3+ was synthesized here and its performance as an adsorbent/catalyst for the simultaneous removal of NH4+ and NO2− from water was investigated. Results confirmed the adsorption and catalysis capability of TA-Fe3+ toward NH4+ and NO2−: (1) Following a 24 h adsorption and redox, the concentrations of NH4+ and NO2− in the mixed solution decreased from initial values of 10.71 and 7.14 to 4.28 and 1.64 mmol/L, respectively, and 0.41 mmol/g of N2 was produced with a maximal N2 yield rate of 0.072 mmol/[g·h]. The N2 yield was about 144 times that in the absence of TA-Fe3+; (2) intermediate products such as nitrous oxide (N2O) and nitrate (NO3−) were not detected; and (3) Raman spectrum analysis identified the site of Fe–O bond to be the center of adsorption and catalysis. Moreover, there were interesting findings: (1) TA-Fe3+ exhibited significantly distinct adsorption behavior toward NH4+ and NO2−. External diffusion and internal diffusion exerted a key influence on the adsorption toward NH4+ and NO2−, respectively; NH4+ was adsorbed on TA-Fe3+ in the form of monolayer, and NO2− in the forms of both monolayer and multilayer; (2) TA-Fe3+ was easily regenerated with water; and (3) adsorption toward NO2− was the rate-determining step of the catalytic reaction. These findings will provide valuable enlightenment for the further work to reveal the adsorption and catalysis mechanisms of TA-Fe3+.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135367689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liping Wei, Kexin Zhou, Qian Rao, Hui-qiang Li, Ping Yang
{"title":"Introducing MXenes into the Heterogeneous Catalyst: Synthesizing Mo<sub>2</sub>CT<sub>x</sub>@Fe<sub>3</sub>O<sub>4</sub> with Excellent Recoverability to Degrade Methylisothiazolinone in the Electro-Fenton System","authors":"Liping Wei, Kexin Zhou, Qian Rao, Hui-qiang Li, Ping Yang","doi":"10.1089/ees.2023.0078","DOIUrl":"https://doi.org/10.1089/ees.2023.0078","url":null,"abstract":"Methylisothiazolinone (MIT) is a commonly used bactericide in wastewater treatment. Residual MIT in wastewater can lead to high environmental risks and toxicity. In this work, an emerging material MXenes has been introduced into the heterogeneous electro-Fenton catalysts to degrade MIT. Ti3C2Tx@Fe3O4, V2CTx@Fe3O4, and Mo2CTx@Fe3O4 were assessed as catalysts for MIT removal. The reasons for the differences among the three catalyst effects were analyzed according to different characterization results. Mo2CTx@Fe3O4 exhibited the best catalytic activity for MIT degradation. At pH = 3, the removal rate of MIT and corresponding chemical oxygen demand of catalyst Mo2CTx@Fe3O4 were 93.41% and 62.46% after 120 min. Among the three catalysts, Mo2CTx@Fe3O4 had larger surface area and porosity. Mo2CTx@Fe3O4 had the highest surface iron content, which meant that Fe3O4 was more easily loaded on the surface of Mo2CTX. What is more, Mo2CTX had the strongest ability to accelerate the regeneration of Fe2+. The durability of Mo2CTx@Fe3O4 was also evaluated. After four cycles, the removal efficiency of MIT only decreased from 92.51% to 89%. This work supports the development of heterogeneous electro-Fenton catalysts and the degradation of MIT.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135860768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison Study on FeS-Activated Peroxymonosulfate, Persulfate, and Hydrogen Peroxide for Allura Red AC Decoloration","authors":"Haijun Li, Yuhang Fu, Min Wang, L. Dong, Na Liu","doi":"10.1089/ees.2023.0070","DOIUrl":"https://doi.org/10.1089/ees.2023.0070","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84730666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Metal Additives (Fe, Zn, and Sn) on the Co-Pyrolysis of Rice Husk and Cow Manure","authors":"Wen Qiu, Ying Liu, Jiacheng Liu, G. Fan, Guangsen Song, Q. Cheng","doi":"10.1089/ees.2023.0030","DOIUrl":"https://doi.org/10.1089/ees.2023.0030","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"70 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78096533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Persulfate/Peroxide Oxidation Activated by Ferrous Ions Using Methylene Blue: Development of a Screening Technique for the Production of Radicals","authors":"Shardula Gawankar, S. Masten","doi":"10.1089/ees.2023.0085","DOIUrl":"https://doi.org/10.1089/ees.2023.0085","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"86 5 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91117394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongcheng Du, Mingyu Yang, Yifan Yang, Xiaolei Zhang, Huihui Chen, H. Ngo, Qiang Liu
{"title":"Sulfur-Modified Biochar Efficiently Removes Cr(VI) from Water by Sorption and Reduction","authors":"Zhongcheng Du, Mingyu Yang, Yifan Yang, Xiaolei Zhang, Huihui Chen, H. Ngo, Qiang Liu","doi":"10.1089/ees.2023.0046","DOIUrl":"https://doi.org/10.1089/ees.2023.0046","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"246 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80611145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality Assurance and Quality Control in Microplastics Processing and Enumeration","authors":"M. Košuth, Claire B. Simmerman, M. Simcik","doi":"10.1089/ees.2023.0063","DOIUrl":"https://doi.org/10.1089/ees.2023.0063","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"38 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73192946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alisa D. Bealessio, Weijue Chen, Krysta J. Krippaehne, Riley A. Murnane, M. Hyman, L. Semprini
{"title":"Alcohol-Dependent Cometabolic Degradation of Chlorinated Aliphatic Hydrocarbons and 1,4-Dioxane by Rhodococcus rhodochrous strain ATCC 21198","authors":"Alisa D. Bealessio, Weijue Chen, Krysta J. Krippaehne, Riley A. Murnane, M. Hyman, L. Semprini","doi":"10.1089/ees.2023.0058","DOIUrl":"https://doi.org/10.1089/ees.2023.0058","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"98 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87713687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}