Haozhi Sun, Yan Feng, Jinwei Huang, Honglan Li, Hao Chen, Ning Suo, Yanzhen Yu
{"title":"Controlling Dissolved Oxygen in Electrochemical Anammox Systems through Sodium Sulfite with Nitrogen Stripping","authors":"Haozhi Sun, Yan Feng, Jinwei Huang, Honglan Li, Hao Chen, Ning Suo, Yanzhen Yu","doi":"10.1089/ees.2023.0055","DOIUrl":"https://doi.org/10.1089/ees.2023.0055","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"7 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Fahrenfeld, Lee Blaney, Kelly D. Good, Lu Liu, R. Tehrani, T. Selvaratnam
{"title":"Lessons Learned from a Cross-Institutional Environmental Engineering and Science Faculty-to-Faculty Mentoring Program","authors":"N. Fahrenfeld, Lee Blaney, Kelly D. Good, Lu Liu, R. Tehrani, T. Selvaratnam","doi":"10.1089/ees.2023.0234","DOIUrl":"https://doi.org/10.1089/ees.2023.0234","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"9 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Landuse/Landcover Change Analysis Using Medium Resolution Images and Machine Learning Algorithms in the Cotton Landscape of Multan and Bahawalpur Districts, Pakistan","authors":"Mirza Wajid Ali Safi, Asad Imran, Masood Arshad, Masood Akhtar, Mohsin Ramzan, Muhammad Asif, Usama Maqsood, Usman Akram, Zoia Arshad Awan","doi":"10.1089/ees.2023.0159","DOIUrl":"https://doi.org/10.1089/ees.2023.0159","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"49 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138981862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Treatment of Reactive Orange 16 Dye Pollutant Using Microbial Fuel Cell as Renewable Power Source","authors":"Imran Ahmad, D. Basu","doi":"10.1089/ees.2023.0136","DOIUrl":"https://doi.org/10.1089/ees.2023.0136","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"81 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138586836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Special Issue Papers: Microplastics: Sources, Fate, and Remediations","authors":"Maryam Salehi, Lauren N. Pincus, Baolin Deng","doi":"10.1089/ees.2023.29005.cfp","DOIUrl":"https://doi.org/10.1089/ees.2023.29005.cfp","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"262 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen
{"title":"Phosphate-Based Corrosion Inhibition in Drinking Water Systems and Effects on Disinfectant Decay and Biofilm Growth","authors":"Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen","doi":"10.1089/ees.2023.0065","DOIUrl":"https://doi.org/10.1089/ees.2023.0065","url":null,"abstract":"Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic pathogens' transmission and thus compromise drinking water safety. Applying phosphate-based corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to biofilms growing inside premise plumbings. In this study, we evaluate the impacts of corrosion inhibitors on biofilms' structural and chemical properties that form in premise plumbing, and the resulting implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm development over 1 to 2 years. Optical coherence tomography (OCT) imaging showed that the studied biofilms' thickness, porosity, and porous structure did not change after exposure to free chlorine for 24 h or monochloramine for 120 h. Compared with groundwater biofilms, phosphate-based biofilms had the highest overall porosity due to their many connecting channels. The phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than groundwater biofilms. Experimental results showed that phosphate-based biofilms consumed more monochloramine after 96 h of contact than other biofilms. A separate set of experiments involving disinfectant decay with suspended biomass material, together with the OCT results, provided parameters for a simplified quasi-first-order reaction–diffusion model so that predictive modeling of decay in biofilms under stagnation conditions could be attempted without parameter fitting. The biofilm modeling results provided a close estimate for free chlorine decay while underestimating monochloramine decay. In agreement with the experimental results, the model results indicate that the phosphate-based biofilms led to slightly faster free chlorine consumption and monochloramine consumption than groundwater biofilms and indicate that diffusion limitation imposed by biofilm pore structure on disinfectant decay is important. The study results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of residual disinfectant during stagnation in the presence of biofilms.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronica Lima Gonsalez, Michael D. Lee, Katherine A. Muller, C. Andrew Ramsburg
{"title":"Process-Based Model to Describe Treatment of Nitrate-Rich Groundwater Using Emulsified Oil","authors":"Veronica Lima Gonsalez, Michael D. Lee, Katherine A. Muller, C. Andrew Ramsburg","doi":"10.1089/ees.2023.0053","DOIUrl":"https://doi.org/10.1089/ees.2023.0053","url":null,"abstract":"Permeable reactive barriers (PRBs) are being considered for treatment where the discharge of nitrate plumes contributes to eutrophication (e.g., Cape Cod, MA). PRBs enhance denitrification through the addition of carbon-based amendments such as the injection of emulsified vegetable oil (EVO). The use of EVO to stimulate denitrification foregrounds aspects of carbon utilization, dosing, longevity, and secondary effects in ways that differ from the application of EVO at hazardous waste sites. The overall objective of this study was to develop and evaluate a process-based modeling approach for simulating denitrification stimulated and supported by EVO. A series of one-dimensional column experiments assessed emulsion retention, production of soluble substrate, and utilization of carbon for nitrate reduction. Retention of 5.5 g dispersed phase emulsion resulted in sustained reduction of nitrate (∼43 mg/day) at ∼2 m/day porewater velocity. Biokinetic processes underlying the model are based on the two-step denitrification description of the Activated Sludge Model (ASM) No. 3. Biokinetic processes were integrated within the flow and transport simulator COMSOL to simulate the column experiment. The model capitalizes on the biokinetic parameters available in the ASM literature to limit the number of site-specific fits of model parameters. Simulation results demonstrate how this approach can result in reasonable predictions, although model performance was enhanced by fitting two parameters—yield coefficients for nitrate and nitrite. Comparisons with existing biokinetic transport models that were similarly fit to the column data suggest that the better overall descriptions of the column data using the process-based model stem from a more robust handling of spatial and temporal distribution of biomass. Sensitivity analyses highlight the importance of accurately describing the transformation of complex carbon into soluble substrate, and the subsequent utilization of that substrate. This research establishes a foundation for exploring implications of carbon processing on dosing, longevity, and effectiveness in denitrifying PRBs.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}