Joseph Wood, Timothy Chamberlain, Abderrahmane Touati, Denise Aslett, Ahmed Abdel-Hady, Mariela Monge, Worth Calfee, Anne Mikelonis, Erin Silvestri, Shannon Serre, Chelsea Hintz
{"title":"Decontamination of Soil Contaminated at the Surface with <i>Bacillus anthracis</i> (Anthrax) Surrogate Spores Using Steam Vapor.","authors":"Joseph Wood, Timothy Chamberlain, Abderrahmane Touati, Denise Aslett, Ahmed Abdel-Hady, Mariela Monge, Worth Calfee, Anne Mikelonis, Erin Silvestri, Shannon Serre, Chelsea Hintz","doi":"10.1089/ees.2024.0195","DOIUrl":"10.1089/ees.2024.0195","url":null,"abstract":"<p><p>In the event of a wide-area release of <i>Bacillus anthracis</i> spores, soils and other outdoor materials will likely become contaminated with the biological agent. Soils may also become contaminated with <i>B. anthracis</i> when livestock or wildlife succumb to anthrax disease. This study was conducted to assess the <i>in situ</i> remediation of soil using steam vapor to inactivate a <i>B. anthracis</i> spore surrogate (<i>Bacillus atrophaeus</i>) inoculated into soil samples. Tests were conducted using small columns (~0.04 m<sup>3</sup> of soil) filled with either loam, clay, or a sandy soil. Following steam treatment, the <i>B. atrophaeus</i> spores were recovered from the test and positive control soil samples via liquid extraction and this liquid was subsequently dilution plated to quantify viable spores in terms of colony-forming units. Decontamination efficacy was assessed as a function of soil type, soil depth, soil moisture, soil temperature, and steam exposure time. Results showed that spore inactivation improved with increasing steam exposure time and diminished with depth. The clay soil generally exhibited the highest soil temperatures and correspondingly showed the highest inactivation of spores. Adding moisture to the soil prior to the steam treatment increased heat transfer within the soil column, and sealing the columns to mitigate steam leakage increased spore inactivation. The results showed that a steam mass of 40-50 kg applied per square meter of soil surface was sufficient to inactivate bacterial spores to depths between 7 and 10 cm. With bacterial spores on the soil column surface, a contact time of 15 min with the steam vapor at 99°C was sufficient for complete inactivation. These findings provide a foundation for estimating costs and time requirements for applying steam to the soil surface, and further confirmatory testing at field-scale is suggested.</p>","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"42 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143998295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haozhi Sun, Yan Feng, Jinwei Huang, Honglan Li, Hao Chen, Ning Suo, Yanzhen Yu
{"title":"Controlling Dissolved Oxygen in Electrochemical Anammox Systems through Sodium Sulfite with Nitrogen Stripping","authors":"Haozhi Sun, Yan Feng, Jinwei Huang, Honglan Li, Hao Chen, Ning Suo, Yanzhen Yu","doi":"10.1089/ees.2023.0055","DOIUrl":"https://doi.org/10.1089/ees.2023.0055","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"7 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Fahrenfeld, Lee Blaney, Kelly D. Good, Lu Liu, R. Tehrani, T. Selvaratnam
{"title":"Lessons Learned from a Cross-Institutional Environmental Engineering and Science Faculty-to-Faculty Mentoring Program","authors":"N. Fahrenfeld, Lee Blaney, Kelly D. Good, Lu Liu, R. Tehrani, T. Selvaratnam","doi":"10.1089/ees.2023.0234","DOIUrl":"https://doi.org/10.1089/ees.2023.0234","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"9 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Landuse/Landcover Change Analysis Using Medium Resolution Images and Machine Learning Algorithms in the Cotton Landscape of Multan and Bahawalpur Districts, Pakistan","authors":"Mirza Wajid Ali Safi, Asad Imran, Masood Arshad, Masood Akhtar, Mohsin Ramzan, Muhammad Asif, Usama Maqsood, Usman Akram, Zoia Arshad Awan","doi":"10.1089/ees.2023.0159","DOIUrl":"https://doi.org/10.1089/ees.2023.0159","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"49 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138981862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Treatment of Reactive Orange 16 Dye Pollutant Using Microbial Fuel Cell as Renewable Power Source","authors":"Imran Ahmad, D. Basu","doi":"10.1089/ees.2023.0136","DOIUrl":"https://doi.org/10.1089/ees.2023.0136","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"81 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138586836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Special Issue Papers: Microplastics: Sources, Fate, and Remediations","authors":"Maryam Salehi, Lauren N. Pincus, Baolin Deng","doi":"10.1089/ees.2023.29005.cfp","DOIUrl":"https://doi.org/10.1089/ees.2023.29005.cfp","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"262 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen
{"title":"Phosphate-Based Corrosion Inhibition in Drinking Water Systems and Effects on Disinfectant Decay and Biofilm Growth","authors":"Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen","doi":"10.1089/ees.2023.0065","DOIUrl":"https://doi.org/10.1089/ees.2023.0065","url":null,"abstract":"Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic pathogens' transmission and thus compromise drinking water safety. Applying phosphate-based corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to biofilms growing inside premise plumbings. In this study, we evaluate the impacts of corrosion inhibitors on biofilms' structural and chemical properties that form in premise plumbing, and the resulting implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm development over 1 to 2 years. Optical coherence tomography (OCT) imaging showed that the studied biofilms' thickness, porosity, and porous structure did not change after exposure to free chlorine for 24 h or monochloramine for 120 h. Compared with groundwater biofilms, phosphate-based biofilms had the highest overall porosity due to their many connecting channels. The phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than groundwater biofilms. Experimental results showed that phosphate-based biofilms consumed more monochloramine after 96 h of contact than other biofilms. A separate set of experiments involving disinfectant decay with suspended biomass material, together with the OCT results, provided parameters for a simplified quasi-first-order reaction–diffusion model so that predictive modeling of decay in biofilms under stagnation conditions could be attempted without parameter fitting. The biofilm modeling results provided a close estimate for free chlorine decay while underestimating monochloramine decay. In agreement with the experimental results, the model results indicate that the phosphate-based biofilms led to slightly faster free chlorine consumption and monochloramine consumption than groundwater biofilms and indicate that diffusion limitation imposed by biofilm pore structure on disinfectant decay is important. The study results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of residual disinfectant during stagnation in the presence of biofilms.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}