Decontamination of Soil Contaminated at the Surface with Bacillus anthracis (Anthrax) Surrogate Spores Using Steam Vapor.

IF 1.8 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
Joseph Wood, Timothy Chamberlain, Abderrahmane Touati, Denise Aslett, Ahmed Abdel-Hady, Mariela Monge, Worth Calfee, Anne Mikelonis, Erin Silvestri, Shannon Serre, Chelsea Hintz
{"title":"Decontamination of Soil Contaminated at the Surface with <i>Bacillus anthracis</i> (Anthrax) Surrogate Spores Using Steam Vapor.","authors":"Joseph Wood, Timothy Chamberlain, Abderrahmane Touati, Denise Aslett, Ahmed Abdel-Hady, Mariela Monge, Worth Calfee, Anne Mikelonis, Erin Silvestri, Shannon Serre, Chelsea Hintz","doi":"10.1089/ees.2024.0195","DOIUrl":null,"url":null,"abstract":"<p><p>In the event of a wide-area release of <i>Bacillus anthracis</i> spores, soils and other outdoor materials will likely become contaminated with the biological agent. Soils may also become contaminated with <i>B. anthracis</i> when livestock or wildlife succumb to anthrax disease. This study was conducted to assess the <i>in situ</i> remediation of soil using steam vapor to inactivate a <i>B. anthracis</i> spore surrogate (<i>Bacillus atrophaeus</i>) inoculated into soil samples. Tests were conducted using small columns (~0.04 m<sup>3</sup> of soil) filled with either loam, clay, or a sandy soil. Following steam treatment, the <i>B. atrophaeus</i> spores were recovered from the test and positive control soil samples via liquid extraction and this liquid was subsequently dilution plated to quantify viable spores in terms of colony-forming units. Decontamination efficacy was assessed as a function of soil type, soil depth, soil moisture, soil temperature, and steam exposure time. Results showed that spore inactivation improved with increasing steam exposure time and diminished with depth. The clay soil generally exhibited the highest soil temperatures and correspondingly showed the highest inactivation of spores. Adding moisture to the soil prior to the steam treatment increased heat transfer within the soil column, and sealing the columns to mitigate steam leakage increased spore inactivation. The results showed that a steam mass of 40-50 kg applied per square meter of soil surface was sufficient to inactivate bacterial spores to depths between 7 and 10 cm. With bacterial spores on the soil column surface, a contact time of 15 min with the steam vapor at 99°C was sufficient for complete inactivation. These findings provide a foundation for estimating costs and time requirements for applying steam to the soil surface, and further confirmatory testing at field-scale is suggested.</p>","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"42 ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1089/ees.2024.0195","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the event of a wide-area release of Bacillus anthracis spores, soils and other outdoor materials will likely become contaminated with the biological agent. Soils may also become contaminated with B. anthracis when livestock or wildlife succumb to anthrax disease. This study was conducted to assess the in situ remediation of soil using steam vapor to inactivate a B. anthracis spore surrogate (Bacillus atrophaeus) inoculated into soil samples. Tests were conducted using small columns (~0.04 m3 of soil) filled with either loam, clay, or a sandy soil. Following steam treatment, the B. atrophaeus spores were recovered from the test and positive control soil samples via liquid extraction and this liquid was subsequently dilution plated to quantify viable spores in terms of colony-forming units. Decontamination efficacy was assessed as a function of soil type, soil depth, soil moisture, soil temperature, and steam exposure time. Results showed that spore inactivation improved with increasing steam exposure time and diminished with depth. The clay soil generally exhibited the highest soil temperatures and correspondingly showed the highest inactivation of spores. Adding moisture to the soil prior to the steam treatment increased heat transfer within the soil column, and sealing the columns to mitigate steam leakage increased spore inactivation. The results showed that a steam mass of 40-50 kg applied per square meter of soil surface was sufficient to inactivate bacterial spores to depths between 7 and 10 cm. With bacterial spores on the soil column surface, a contact time of 15 min with the steam vapor at 99°C was sufficient for complete inactivation. These findings provide a foundation for estimating costs and time requirements for applying steam to the soil surface, and further confirmatory testing at field-scale is suggested.

蒸汽净化土壤表面被炭疽芽孢杆菌(炭疽)替代孢子污染的研究。
在炭疽芽孢杆菌孢子大面积释放的情况下,土壤和其他室外材料可能会受到这种生物制剂的污染。当牲畜或野生动物死于炭疽病时,土壤也可能被炭疽杆菌污染。研究了蒸汽灭活炭疽芽孢杆菌孢子替代物(萎缩芽孢杆菌)对土壤的原位修复效果。试验采用小柱(~0.04 m3土)填充壤土、粘土或沙土进行。蒸汽处理后,通过液体提取从测试和阳性对照土壤样品中回收萎缩芽孢杆菌孢子,随后稀释该液体,以菌落形成单位量化活孢子。以土壤类型、土壤深度、土壤湿度、土壤温度和蒸汽暴露时间的函数来评估去污效果。结果表明,随着蒸汽暴露时间的延长,孢子的失活程度有所提高,而随着蒸汽暴露深度的增加,孢子的失活程度有所降低。粘土一般表现出最高的土壤温度,相应地表现出最高的孢子失活。在蒸汽处理之前向土壤中添加水分增加了土壤柱内的传热,并且密封柱以减轻蒸汽泄漏增加了孢子的失活。结果表明,每平方米土壤表面施加40-50公斤的蒸汽质量足以使7至10厘米深度的细菌孢子失活。当细菌孢子在土柱表面时,与99°C的蒸汽接触15分钟就足以完全灭活。这些发现为估算在土壤表面施用蒸汽所需的成本和时间提供了基础,并建议进一步在现场规模上进行验证性试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Engineering Science
Environmental Engineering Science 环境科学-工程:环境
CiteScore
3.90
自引率
5.60%
发文量
67
审稿时长
4.9 months
期刊介绍: Environmental Engineering Science explores innovative solutions to problems in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. Published monthly online, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信