Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies最新文献

筛选
英文 中文
Dynamics of Vibration Energy Harvester Governed by Gravity and Magnetic Force in a Rotating Wind Turbine Blade 旋转风力机叶片重磁力作用下振动能量采集器的动力学研究
Saman Nezami, H. Jung, M. Sung, Soobum Lee
{"title":"Dynamics of Vibration Energy Harvester Governed by Gravity and Magnetic Force in a Rotating Wind Turbine Blade","authors":"Saman Nezami, H. Jung, M. Sung, Soobum Lee","doi":"10.1115/SMASIS2018-7958","DOIUrl":"https://doi.org/10.1115/SMASIS2018-7958","url":null,"abstract":"This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128642115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Practical Considerations for Sliding Mode Observers for High-Rate Structural Health Monitoring 滑模观测器用于高速率结构健康监测的实际考虑
B. Joyce, J. Dodson, Jonathan Hong, S. Laflamme
{"title":"Practical Considerations for Sliding Mode Observers for High-Rate Structural Health Monitoring","authors":"B. Joyce, J. Dodson, Jonathan Hong, S. Laflamme","doi":"10.1115/SMASIS2018-7936","DOIUrl":"https://doi.org/10.1115/SMASIS2018-7936","url":null,"abstract":"Structural health monitoring (SHM) of high-rate, mechanical systems in dynamically harsh environments presents many challenges over traditional SHM applications. Damage in these systems must be detected and quantified in tens to hundreds of microseconds in order to have sufficient time to react and mitigate damage. The computation speeds and robustness of sliding mode observers (SMOs) for state, parameter, and disturbance estimation for linear and nonlinear systems make them an attractive approach for real-time SHM of high-rate systems. This paper investigates a novel SMO combined with a recursive least squares parameter estimator to detect and track changing system parameters. The observer is simulated on a one degree-of-freedom system with time-varying model parameters to mimic damage. This paper focuses on practical considerations for SMOs for high-rate systems, such as the effects of measurement noise and sampling rates on the estimator’s accuracy and convergence speeds.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"325 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124586975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A New Rheological Model of Magnetorheological Fluids for CFD: Comparison and Validation 一种新的用于CFD的磁流变流体流变模型:比较与验证
Muaz Kemerli, T. Engin, Z. Parlak
{"title":"A New Rheological Model of Magnetorheological Fluids for CFD: Comparison and Validation","authors":"Muaz Kemerli, T. Engin, Z. Parlak","doi":"10.1115/SMASIS2018-7984","DOIUrl":"https://doi.org/10.1115/SMASIS2018-7984","url":null,"abstract":"Magnetorheological fluid is a special smart fluid which can show different rheological properties under different magnetic flux densities due to its magnetically sensitive structure. This makes the fluid able to be manipulated and semi-actively controlled for various applications such as dampers, clutches and brakes. To provide an effective damping it is necessary to create an appropriate control algorithm. In order to design a structure with magnetorheological fluid and to get an idea for a control approach, the physics of the fluid motion has to be modelled. Computational Fluid Dynamics is an effective tool to model any fluid behaviour or any fluid involved structure. For magnetorheological devices, despite number of numerical models available in the literature, a befitting model is not yet presented. In this study a mapped rheological model is proposed and used in a magnetorheological damper simulation. The results are compared with other models and experimental data. It is shown that the new mapped model is effective and better than old approaches. It also showed a good agreement with the experimental data.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125841398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Experimental Exploration of Post Constrained Recovery Mechanics of NiTi 镍钛后约束恢复力学的实验探索
M. Haider, Ameralys Correa, A. Moghadam, Xiaojun Yan, N. Salowitz
{"title":"Experimental Exploration of Post Constrained Recovery Mechanics of NiTi","authors":"M. Haider, Ameralys Correa, A. Moghadam, Xiaojun Yan, N. Salowitz","doi":"10.1115/SMASIS2018-8168","DOIUrl":"https://doi.org/10.1115/SMASIS2018-8168","url":null,"abstract":"Shape memory alloys (SMAs) have tremendous potential use as actuators in mechanical systems due to their high specific energy density. Large recovery stresses can be generated when Nickel Titanium (NiTi), the most widely used SMA, undergoes constrained recovery where it is held in a deformed geometry and heated from a detwinned martensite phase to austenite phase. Recent experimental results have found that residual stresses can also be generated in NiTi after returning to a low temperature geometrically constrained state. This paper presents experimental results performed on NiTi wire samples where wire was: 1) deformed from a low temperature twinned martensite state to produce a strain that would be recoverable in an unloaded state 2) held at that strain state and heated above the austenite finish transition temperature and then cooled back below the martensite transition finish temperature while recording the forces generated. It was found that a residual load was produced in the low temperature state. Results from further testing beyond this point showed repeatability with application of small and large strains. Post constrained recovery stresses have the potential to be used to generate residual stresses in structures in a low energy, un-actuated state with a remaining potential for thermal actuation.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128114657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Real-Time Detection of Ancient Architecture Features Based on Smartphones 基于智能手机的古建筑特征实时检测
Zheng Zou, Niannian Wang, Peng Zhao, Xuefeng Zhao
{"title":"Real-Time Detection of Ancient Architecture Features Based on Smartphones","authors":"Zheng Zou, Niannian Wang, Peng Zhao, Xuefeng Zhao","doi":"10.1115/SMASIS2018-8265","DOIUrl":"https://doi.org/10.1115/SMASIS2018-8265","url":null,"abstract":"Due to the particularity of texture features in ancient buildings, which refers to the fact that these features have a high historical and artistic value, it is of great significance to identify and count them. However, the complexity and large number of textures are a big challenge for the artificial identification statistics. In order to overcome these challenges, this paper proposes an approach that uses smartphones to achieve a real-time detection of ancient buildings’ features. The training process is based on SSD-Mobilenet, which is a kind of Convolutional Neural Network (CNN). The results show that this method shows well performance in reality and can indeed detect different ancient building features in real time.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127038532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Towards a Design Framework for Multifunctional Shape Memory Polymer Based Product in the Era of 4D Printing 面向4D打印时代的多功能形状记忆聚合物产品设计框架
Bingcong Jian, Fédéric Demoly, Yicha Zhang, Samuel Gomes
{"title":"Towards a Design Framework for Multifunctional Shape Memory Polymer Based Product in the Era of 4D Printing","authors":"Bingcong Jian, Fédéric Demoly, Yicha Zhang, Samuel Gomes","doi":"10.1115/SMASIS2018-7935","DOIUrl":"https://doi.org/10.1115/SMASIS2018-7935","url":null,"abstract":"Shape-memory polymers (SMPs) as stimuli-responsive shape-changing materials gained significant interest in recent years. Their developments have challenged the conventional understanding of the polymer effect and have further enhanced and broadened the applications of the smart materials. Nowadays, 4D printing is seen as an emerging technology that combines smart materials and additive manufacturing, which can be used to design active mechanical structures. It provides tremendous potential for engineering applications which is capable of producing complex, stimuli-responsive 3D structures. While many “ad hoc” designs of 4D printed solutions have been progressively developed for a specific process, the general approach of additive manufacturing that integrates smart materials in real time across an entire product development process is not pervasive in the industry. To solve this issue, the authors propose a general 4D printing oriented framework for the design of multi-functional SMPs architectures. This framework is not intended to be an exhaustive and specific instruction but is instead a means to motivate these designers to seek the process of applying these unique functional materials to their own designs and applications. It will be useful and give more insight into the design process of the SMP device.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121470888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Impulsively-Excited Bistable Energy Harvester Combined With Electromagnetic Mechanism 结合电磁机构的脉冲激发双稳态能量采集器
Shitong Fang, W. Liao
{"title":"Impulsively-Excited Bistable Energy Harvester Combined With Electromagnetic Mechanism","authors":"Shitong Fang, W. Liao","doi":"10.1115/SMASIS2018-7979","DOIUrl":"https://doi.org/10.1115/SMASIS2018-7979","url":null,"abstract":"Impulsive energy provides a promising source for energy harvesting techniques due to their high amplitude and abundance in a living environment. The sensitivity to excitation of bistable energy harvesters makes them feasible for impulsive-type events. In this paper, a novel impulsively-excited bistable energy harvester with rotary structure and plectrum is proposed to achieve plucking-based frequency up-conversion. The input excitation is converted to plucking force on the bistable energy harvester, so as to help it go into the high-energy orbit. The piezoelectric and electromagnetic transduction mechanisms are combined by incorporating a coil to the structure in order to overcome the increase of damping introduced by the bistable configuration. As a result, high-energy output and broadband performance could be realized. Impact mechanics is employed to develop a comprehensive model, which could be used to analyze the nonlinear dynamics and predict the system responses under various plucking velocities and overlap lengths. Numerical simulation shows that the bistable energy harvester could experience large-amplitude oscillation under impulsive excitation and the hybrid configuration outperforms the standalone ones under high damping ratio and low coupling coefficient. The proposed design is targeted to be applied on the turnstile gates of the subway station. Less human effort would be needed when passengers pass the turnstile gate due to the snap-through motion of bistability.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122662801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun PVDF Miniaturized Muscles for Bio Inspired Morphing Materials 静电纺PVDF微型肌肉仿生变形材料
K. C. Chinnam, Federico Fabriani, Iucci Giovanna, G. Lanzara
{"title":"Electrospun PVDF Miniaturized Muscles for Bio Inspired Morphing Materials","authors":"K. C. Chinnam, Federico Fabriani, Iucci Giovanna, G. Lanzara","doi":"10.1115/SMASIS2018-8054","DOIUrl":"https://doi.org/10.1115/SMASIS2018-8054","url":null,"abstract":"Several biological creatures represent a great inspiration for the realization of advanced morphing materials. For instance, bat wing is extremely interesting because of its unique ability of drastically changing shape and size thanks to an embedded distributed array of ultra-small-in-size muscles. This is obviously done as a response to continuously detected external stimuli. Novel ultra-lightweight and non-invasive artificial muscles that can exploit a dual functionality and that can be integrated into hosting materials, are here investigated. The muscles are made of a piezoelectric (PVDF) single micro-fibre and a micro-fibre rope created using a simple electrospinning technique. The advantage of this technique is the less-complex in-situ fibres poling during electrospinning which makes them an attractive alternative compared to thin PVDF films that require an additional complicated poling step to achieve their piezoelectric properties. Muscles that possess an active and passive electromechanical response based on a ∼ 3-micron thick single PVDF fibre and ∼ 150-micron thick PVDF fibred rope, were realized. Preliminary results prove that these PVDF fibres have a highly accurate electromechanical response over an extremely wide frequency range. Fully constrained single fibres and fibre ropes, when actuated with the corresponding electric fields, show a midpoint displacement of ∼ 36 μm.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122933443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Power Generation Amplification and Stack Toughening via Compliant Layer Interdigitation 通过柔性层互指实现发电放大和堆叠增韧
E. Krech, R. Barrett, E. Cadel, E. Friis
{"title":"Power Generation Amplification and Stack Toughening via Compliant Layer Interdigitation","authors":"E. Krech, R. Barrett, E. Cadel, E. Friis","doi":"10.1115/SMASIS2018-8043","DOIUrl":"https://doi.org/10.1115/SMASIS2018-8043","url":null,"abstract":"Energy harvesting from low frequency cyclic motion is possible in a variety of applications, but generating power with piezoelectric stacks at low, off-resonance frequencies is challenging. In this study, Compliant Layer Adaptive Composite Stacks (CLACS) were investigated as a toughened piezoelectric generator to increase efficiency at low frequencies and match the compliance of many commercial devices.\u0000 CLACS were manufactured with PZT discs, interdigitated epoxy layers of varying thicknesses, and encapsulated in epoxy. Energy production of each CLACS type as a function of compliant layer thickness was characterized. Power amplification of CLACS was modeled assuming discs remain planar, volume of epoxy was conserved, and total epoxy deformations were small. Shear lag theory demonstrated increases in positive in-plane strains induced by external through-thickness compression. This amplified sensitivity of the entire stack to through-thickness compressions, substantially increases power generation capability.\u0000 Experimental data showed that increases in compliant layer thickness resulted in increased power generation in all loading conditions. The shear lag structural mechanics model showed good correlation with theoretical predictions, assuming small deformation of the compliant layer. In addition to reducing composite stiffness, the CLACS generated 61% more power than conventional stack actuators with the same PZT volume via lateral strain amplification effects.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128211372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Leading-Edge Alula-Inspired Device (LEAD) for Stall Mitigation and Lift Enhancement for Low Reynolds Number Finite Wings 用于降低低雷诺数有限机翼失速和提高升力的领先alula启发装置(LEAD
M. Ito, Chengfang Duan, L. Chamorro, A. Wissa
{"title":"A Leading-Edge Alula-Inspired Device (LEAD) for Stall Mitigation and Lift Enhancement for Low Reynolds Number Finite Wings","authors":"M. Ito, Chengfang Duan, L. Chamorro, A. Wissa","doi":"10.1115/SMASIS2018-8170","DOIUrl":"https://doi.org/10.1115/SMASIS2018-8170","url":null,"abstract":"Even though Unmanned Aerial Vehicles (UAVs) operating at low Reynolds numbers are becoming common, their performance and maneuverability are still greatly limited due to aerodynamic phenomena such as stall and flow separation. Birds mitigate these limitations by adapting their wings and feather shapes during flight. Equipped with a set of small feathers, known as the alula, located near the leading edge and covering 5% to 20% of the span, bird wings can sustain the lift necessary to fly at low velocities and high angles of attack. This paper presents the effect on lift generation of different placements of a Leading-Edge Alula-inpsired Device (LEAD) along the span of a moderate aspect-ratio wing. The device is modeled after the alula on a bird, and it increases the capability of a wing to maintain higher pressure gradients by modifying the near-wall flow close to the leading-edge. It also generates tip vortices that modify the turbulence on the upper-surface of the wing, delaying flow separation. The effect of the LEAD can be compared to traditional slats or vortex generators on two-dimensional wings. For finite wings, on the other hand, the effect depends on the interaction between the LEADs tip vortices and those from the main structure. Wind tunnel experiments were conducted on a cambered wing at post-stall and deep-stall angles of attack at low Reynolds numbers of 100,000 and 135,000. To quantify the aerodynamic effect of the device, the lift generated by the wing with and without the LEAD were measured using a 6-axis force and torque transducer, and the resulting lift coefficients were compared. Results show that the location of the LEAD yielding the highest lift enhancement was 50% semi-span away from the wing root. Lift improvements of up to 32% for post stall and 37% for deep stall were obtained at this location, demonstrating that the three-dimensional effects of the LEAD are important. The lift enhancement was also more prominent on a finite moderate aspect-ratio wing (3D) than on an airfoil (2D), confirming that the LEAD is a three-dimensional device. Identifying the configurations and deployment parameters that improve lift generation the most is needed to design an adaptive LEAD that can be implemented on a UAV wing for increased mission-adaptability.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115814194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信