DALI@MICCAIPub Date : 2022-12-01DOI: 10.1007/978-3-031-17027-0_8
Han S. Lee, Haeil Lee, H. Hong, Junmo Kim
{"title":"Noisy Label Classification Using Label Noise Selection with Test-Time Augmentation Cross-Entropy and NoiseMix Learning","authors":"Han S. Lee, Haeil Lee, H. Hong, Junmo Kim","doi":"10.1007/978-3-031-17027-0_8","DOIUrl":"https://doi.org/10.1007/978-3-031-17027-0_8","url":null,"abstract":"","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126416865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation","authors":"Weiwei Cui, Yaqi Wang, Yilong Li, Dansheg Song, Xingyong Zuo, Jiaojiao Wang, Yifan Zhang, Huiyu Zhou, B. Chong, L. Zeng, Qianni Zhang","doi":"10.48550/arXiv.2208.01643","DOIUrl":"https://doi.org/10.48550/arXiv.2208.01643","url":null,"abstract":". Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development. The codebase and dataset are released here.","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131881329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DALI@MICCAIPub Date : 2022-05-10DOI: 10.48550/arXiv.2205.04982
Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, M. Bilgel, S. Resnick, Jerry L Prince, A. Carass
{"title":"Disentangling A Single MR Modality","authors":"Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, M. Bilgel, S. Resnick, Jerry L Prince, A. Carass","doi":"10.48550/arXiv.2205.04982","DOIUrl":"https://doi.org/10.48550/arXiv.2205.04982","url":null,"abstract":"Disentangling anatomical and contrast information from medical images has gained attention recently, demonstrating benefits for various image analysis tasks. Current methods learn disentangled representations using either paired multi-modal images with the same underlying anatomy or auxiliary labels (e.g., manual delineations) to provide inductive bias for disentanglement. However, these requirements could significantly increase the time and cost in data collection and limit the applicability of these methods when such data are not available. Moreover, these methods generally do not guarantee disentanglement. In this paper, we present a novel framework that learns theoretically and practically superior disentanglement from single modality magnetic resonance images. Moreover, we propose a new information-based metric to quantitatively evaluate disentanglement. Comparisons over existing disentangling methods demonstrate that the proposed method achieves superior performance in both disentanglement and cross-domain image-to-image translation tasks.","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130538998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DALI@MICCAIPub Date : 1900-01-01DOI: 10.1007/978-3-031-17027-0_10
Yasmina Alkhalil, Aymen Ayaz, C. Lorenz, J. Weese, J. Pluim, M. Breeuwer
{"title":"A Stratified Cascaded Approach for Brain Tumor Segmentation with the Aid of Multi-modal Synthetic Data","authors":"Yasmina Alkhalil, Aymen Ayaz, C. Lorenz, J. Weese, J. Pluim, M. Breeuwer","doi":"10.1007/978-3-031-17027-0_10","DOIUrl":"https://doi.org/10.1007/978-3-031-17027-0_10","url":null,"abstract":"","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129589548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DALI@MICCAIPub Date : 1900-01-01DOI: 10.1007/978-3-031-17027-0_1
Saeko Sasuga, Akira Kudo, Y. Kitamura, S. Iizuka, E. Simo-Serra, A. Hamabe, Masayuki Ishii, I. Takemasa
{"title":"Image Synthesis-Based Late Stage Cancer Augmentation and Semi-supervised Segmentation for MRI Rectal Cancer Staging","authors":"Saeko Sasuga, Akira Kudo, Y. Kitamura, S. Iizuka, E. Simo-Serra, A. Hamabe, Masayuki Ishii, I. Takemasa","doi":"10.1007/978-3-031-17027-0_1","DOIUrl":"https://doi.org/10.1007/978-3-031-17027-0_1","url":null,"abstract":"","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121757630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DALI@MICCAIPub Date : 1900-01-01DOI: 10.1007/978-3-031-17027-0_4
Filip Rusak, Rodrigo Santa Cruz, Elliot Smith, J. Fripp, C. Fookes, P. Bourgeat, Andrew P. Bradley
{"title":"Lesser of Two Evils Improves Learning in the Context of Cortical Thickness Estimation Models - Choose Wisely","authors":"Filip Rusak, Rodrigo Santa Cruz, Elliot Smith, J. Fripp, C. Fookes, P. Bourgeat, Andrew P. Bradley","doi":"10.1007/978-3-031-17027-0_4","DOIUrl":"https://doi.org/10.1007/978-3-031-17027-0_4","url":null,"abstract":"","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123080601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}