解开单个MR模态

Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, M. Bilgel, S. Resnick, Jerry L Prince, A. Carass
{"title":"解开单个MR模态","authors":"Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, M. Bilgel, S. Resnick, Jerry L Prince, A. Carass","doi":"10.48550/arXiv.2205.04982","DOIUrl":null,"url":null,"abstract":"Disentangling anatomical and contrast information from medical images has gained attention recently, demonstrating benefits for various image analysis tasks. Current methods learn disentangled representations using either paired multi-modal images with the same underlying anatomy or auxiliary labels (e.g., manual delineations) to provide inductive bias for disentanglement. However, these requirements could significantly increase the time and cost in data collection and limit the applicability of these methods when such data are not available. Moreover, these methods generally do not guarantee disentanglement. In this paper, we present a novel framework that learns theoretically and practically superior disentanglement from single modality magnetic resonance images. Moreover, we propose a new information-based metric to quantitatively evaluate disentanglement. Comparisons over existing disentangling methods demonstrate that the proposed method achieves superior performance in both disentanglement and cross-domain image-to-image translation tasks.","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Disentangling A Single MR Modality\",\"authors\":\"Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, M. Bilgel, S. Resnick, Jerry L Prince, A. Carass\",\"doi\":\"10.48550/arXiv.2205.04982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disentangling anatomical and contrast information from medical images has gained attention recently, demonstrating benefits for various image analysis tasks. Current methods learn disentangled representations using either paired multi-modal images with the same underlying anatomy or auxiliary labels (e.g., manual delineations) to provide inductive bias for disentanglement. However, these requirements could significantly increase the time and cost in data collection and limit the applicability of these methods when such data are not available. Moreover, these methods generally do not guarantee disentanglement. In this paper, we present a novel framework that learns theoretically and practically superior disentanglement from single modality magnetic resonance images. Moreover, we propose a new information-based metric to quantitatively evaluate disentanglement. Comparisons over existing disentangling methods demonstrate that the proposed method achieves superior performance in both disentanglement and cross-domain image-to-image translation tasks.\",\"PeriodicalId\":116176,\"journal\":{\"name\":\"DALI@MICCAI\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DALI@MICCAI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.04982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DALI@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.04982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从医学图像中分离解剖和对比信息最近受到关注,显示出各种图像分析任务的好处。目前的方法使用具有相同底层解剖结构的配对多模态图像或辅助标签(例如,手动描绘)来学习解纠缠表示,以提供解纠缠的归纳偏差。但是,这些要求可能会大大增加数据收集的时间和成本,并在无法获得这些数据时限制这些方法的适用性。此外,这些方法通常不能保证解纠缠。在本文中,我们提出了一个新的框架,从理论上和实践上学习单模态磁共振图像的优越解纠缠。此外,我们提出了一种新的基于信息的度量来定量评估解缠。与现有解纠缠方法的比较表明,该方法在解纠缠和跨域图像到图像的翻译任务中都取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangling A Single MR Modality
Disentangling anatomical and contrast information from medical images has gained attention recently, demonstrating benefits for various image analysis tasks. Current methods learn disentangled representations using either paired multi-modal images with the same underlying anatomy or auxiliary labels (e.g., manual delineations) to provide inductive bias for disentanglement. However, these requirements could significantly increase the time and cost in data collection and limit the applicability of these methods when such data are not available. Moreover, these methods generally do not guarantee disentanglement. In this paper, we present a novel framework that learns theoretically and practically superior disentanglement from single modality magnetic resonance images. Moreover, we propose a new information-based metric to quantitatively evaluate disentanglement. Comparisons over existing disentangling methods demonstrate that the proposed method achieves superior performance in both disentanglement and cross-domain image-to-image translation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信