CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation

Weiwei Cui, Yaqi Wang, Yilong Li, Dansheg Song, Xingyong Zuo, Jiaojiao Wang, Yifan Zhang, Huiyu Zhou, B. Chong, L. Zeng, Qianni Zhang
{"title":"CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation","authors":"Weiwei Cui, Yaqi Wang, Yilong Li, Dansheg Song, Xingyong Zuo, Jiaojiao Wang, Yifan Zhang, Huiyu Zhou, B. Chong, L. Zeng, Qianni Zhang","doi":"10.48550/arXiv.2208.01643","DOIUrl":null,"url":null,"abstract":". Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development. The codebase and dataset are released here.","PeriodicalId":116176,"journal":{"name":"DALI@MICCAI","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DALI@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.01643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development. The codebase and dataset are released here.
CTooth+:大型牙体锥形束计算机断层数据集和牙体分割基准
. 准确的牙齿体积分割是计算机辅助牙齿分析的先决条件。基于深度学习的牙齿分割方法虽然取得了令人满意的效果,但需要大量具有ground truth的牙齿数据。可公开获得的牙科数据是有限的,这意味着现有的方法不能被复制、评估和应用于临床实践。在本文中,我们建立了一个三维牙科CBCT数据集CTooth+,其中有22个完全注释的卷和146个未标记的卷。我们进一步评估了基于全监督学习、半监督学习和主动学习的几种最先进的牙齿体积分割策略,并定义了性能原则。本研究为牙齿体积分割任务提供了新的基准,也可作为未来基于人工智能的牙齿成像研究和临床应用开发的基础。代码库和数据集在这里发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信