Electrochem最新文献

筛选
英文 中文
Relevant Aspects in the Development of Electrochemical Aptasensors for the Determination of Antibiotics—A Review 开发用于检测抗生素的电化学光度传感器的相关方面--综述
Electrochem Pub Date : 2023-12-12 DOI: 10.3390/electrochem4040035
Daniela Nunes da Silva, Arnaldo César Pereira
{"title":"Relevant Aspects in the Development of Electrochemical Aptasensors for the Determination of Antibiotics—A Review","authors":"Daniela Nunes da Silva, Arnaldo César Pereira","doi":"10.3390/electrochem4040035","DOIUrl":"https://doi.org/10.3390/electrochem4040035","url":null,"abstract":"Aptamers are three-dimensional structures of DNA or RNA that present high affinity and selectivity to specific targets, obtained through in vitro screening. Aptamers are used as biological recognizers in electrochemical biosensors, the so-called aptasensors, providing greater specificity in recognizing the most diverse analytes. Electrochemical aptasensors have extremely relevant characteristics, such as high sensitivity, low cost compared to other biorecognizers such as antibodies, and excellent compatibility, being considered one of the most promising alternative methods in several areas, such as biomedical diagnosis and monitoring environmental contaminants. In this sense, the present work reviews the relevant aspects of methodologies based on electrochemical aptasensors and their applications in determining antibiotics, seeking to foster innovation in electrochemical biosensors.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis 用于毒物定点分析的实验室芯片模型电化学生物传感器平台
Electrochem Pub Date : 2023-11-21 DOI: 10.3390/electrochem4040034
Mohana Marimuthu, Vinoth Krishnan, Shailendra Sudhakaran, Sevakumaran Vigneswari, Shanmugam Senthilkumar, M. Veerapandian
{"title":"Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis","authors":"Mohana Marimuthu, Vinoth Krishnan, Shailendra Sudhakaran, Sevakumaran Vigneswari, Shanmugam Senthilkumar, M. Veerapandian","doi":"10.3390/electrochem4040034","DOIUrl":"https://doi.org/10.3390/electrochem4040034","url":null,"abstract":"The global hazardous waste management market is expected to reach USD 987.51 million by 2027 at a CAGR of 14.48%. The early detection of corrosive, flammable, and infectious toxicants from natural sources or manmade contaminants from different environments is crucial to ensure the safety and security of the global living system. Even though the emergence of advanced science and technology continuously offers a more comfortable lifestyle, there are two sides of the coin in terms of opportunities and challenges, demanding solutions for greener applications and waste-to-wealth strategies. A modern analytical technique based on an electrochemical approach and microfluidics is one such emerging advanced solution for the early and effective detection of toxicants. This review attempts to highlight the different studies performed in the field of toxicant analysis, especially the fusion of electrochemistry and lab-chip model systems, promising for point-of-need analysis. The contents of this report are organised by classifying the types of toxicants and trends in electrochemical-integrated lab-chip assays that test for heavy-metal ions, food-borne pathogens, pesticides, physiological reactive oxygen/nitrogen species, and microbial metabolites. Future demands in toxicant analysis and possible suggestions in the field of microanalysis-mediated electrochemical (bio)sensing are summarised.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139253885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Disposable Carbon-Based Electrochemical Cell Modified with Carbon Black and Ag/δ-FeOOH for Non-Enzymatic H2O2 Electrochemical Sensing 用炭黑和Ag/δ-FeOOH修饰一次性碳基电化学电池用于非酶催化H2O2电化学传感
Electrochem Pub Date : 2023-11-14 DOI: 10.3390/electrochem4040033
Wiviane E. R. de Melo, Karoline S. Nantes, Ana L. H. K. Ferreira, Márcio C. Pereira, Luiz H. C. Mattoso, Ronaldo C. Faria, André S. Afonso
{"title":"A Disposable Carbon-Based Electrochemical Cell Modified with Carbon Black and Ag/δ-FeOOH for Non-Enzymatic H2O2 Electrochemical Sensing","authors":"Wiviane E. R. de Melo, Karoline S. Nantes, Ana L. H. K. Ferreira, Márcio C. Pereira, Luiz H. C. Mattoso, Ronaldo C. Faria, André S. Afonso","doi":"10.3390/electrochem4040033","DOIUrl":"https://doi.org/10.3390/electrochem4040033","url":null,"abstract":"Hydrogen peroxide (H2O2) is an essential analyte for detecting neurodegenerative diseases and inflammatory processes and plays a crucial role in pharmaceuticals, the food industry, and environmental monitoring. However, conventional H2O2 detection methods have drawbacks such as lengthy analysis times, high costs, and bulky equipment. Non-enzymatic sensors have emerged as promising alternatives to overcome these limitations. In this research, we introduce a simple, portable, and cost-effective non-enzymatic sensor that uses carbon black (CB) and silver nanoparticle-modified δ-FeOOH (Ag/δ-FeOOH) integrated into a disposable electrochemical cell (DCell). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS) confirmed successful CB and Ag/δ-FeOOH immobilization on the DCell working electrode. Electrochemical investigations revealed that the DCell-CB//Ag/δ-FeOOH sensor exhibited an approximately twofold higher apparent heterogeneous electron transfer rate constant than the DCell-Ag/δ-FeOOH sensor, capitalizing on CB’s advantages. Moreover, the sensor displayed an excellent electrochemical response for H2O2 reduction, boasting a low detection limit of 22 µM and a high analytical sensitivity of 214 μA mM−1 cm−2. Notably, the DCell-CB//Ag/δ-FeOOH sensor exhibited outstanding selectivity for H2O2 detection, even in potential interferents such as dopamine, uric acid, and ascorbic acid. Furthermore, the sensor has the right qualities for monitoring H2O2 in complex biological samples, as evidenced by H2O2 recoveries ranging from 92% to 103% in 10% fetal bovine serum. These findings underscore the considerable potential of the DCell-CB//Ag/δ-FeOOH sensor for precise and reliable H2O2 monitoring in various biomedical and environmental applications.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separator Materials for Lithium Sulfur Battery—A Review 锂硫电池隔膜材料综述
Electrochem Pub Date : 2023-11-13 DOI: 10.3390/electrochem4040032
Ryohei Mori
{"title":"Separator Materials for Lithium Sulfur Battery—A Review","authors":"Ryohei Mori","doi":"10.3390/electrochem4040032","DOIUrl":"https://doi.org/10.3390/electrochem4040032","url":null,"abstract":"In the recent rechargeable battery industry, lithium sulfur batteries (LSBs) have demonstrated to be a promising candidate battery to serve as the next-generation secondary battery, owing to its enhanced theoretical specific energy, economy, and environmental friendliness. Its inferior cyclability, however, which is primarily due to electrode deterioration caused by the lithium polysulfide shuttle effect, is still a major problem for the real industrial usage of LSBs. The optimization of the separator and functional barrier layer is an effective strategy for remedying these issues. In this article, the current progress based on the classification and modification of functional separators is summarized. We will also describe their working mechanisms as well as the resulting LSB electrochemical properties. In addition, necessary performance for separators will also be mentioned in order to gain optimized LSB performance.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene-Oxide-Coated CoP2@C Anode Enables High Capacity of Lithium-Ion Batteries 石墨烯-氧化膜CoP2@C阳极实现高容量锂离子电池
Electrochem Pub Date : 2023-10-26 DOI: 10.3390/electrochem4040031
Wei Zhang, Hangxuan Xie, Zirui Dou, Zhentao Hao, Qianhui Huang, Ziqi Guo, Chao Wang, Kanghua Miao, Xiongwu Kang
{"title":"Graphene-Oxide-Coated CoP2@C Anode Enables High Capacity of Lithium-Ion Batteries","authors":"Wei Zhang, Hangxuan Xie, Zirui Dou, Zhentao Hao, Qianhui Huang, Ziqi Guo, Chao Wang, Kanghua Miao, Xiongwu Kang","doi":"10.3390/electrochem4040031","DOIUrl":"https://doi.org/10.3390/electrochem4040031","url":null,"abstract":"Cobalt diphosphides (CoP2) show a high theoretical capacity and hold great promise as anode materials for lithium-ion batteries (LIBs). However, the large variation in the volume and structure of CoP2 caused during lithium-ion insertion and extraction results in electrode fragmentation and a compromised solid electrolyte interface, ultimately leading to poor cycling performance. Herein, a composite of CoP2 nanoparticles encapsulated in carbon matrix has been successfully synthesized by carbonization of Co-MOF-based zeolitic imidazolate frameworks (ZIF-67) and sequential phosphorization and further wrapped in graphene oxide (CoP2@C@GO). The formation of CoP2 was confirmed by X-ray diffraction, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The morphology of CoP2@C with and without GO wrapping was examined by scanning electron microscopy and transmission electron spectroscopy. It was demonstrated that the decoration of GO significantly reduces the polarization of CoP2@C electrodes, enhancing their charge capacity and cycling stability as an anode material for LIBs. After 200 cycles, they deliver a capacity of 450 mAh·g−1.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134907213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms 快速循环伏安负电容对ir降影响的差异
Electrochem Pub Date : 2023-10-23 DOI: 10.3390/electrochem4040030
Yuanyuan Liu, Koichi Jeremiah Aoki, Jingyuan Chen
{"title":"The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms","authors":"Yuanyuan Liu, Koichi Jeremiah Aoki, Jingyuan Chen","doi":"10.3390/electrochem4040030","DOIUrl":"https://doi.org/10.3390/electrochem4040030","url":null,"abstract":"Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR-drop effect due to solution resistance on the peaks, as well as a heterogeneously kinetic effect. It is also brought about by the negatively capacitive currents associated with charge transfer reactions. The reaction product generates dipoles with counterions to yield a capacitance, the current of which flows oppositely to that of the double-layer capacitance. The three effects are specified here in the oxidation of a ferrocenyl derivative using fast scan voltammetry. The expression for voltammograms complicated with IR-drop is derived analytically and yields deformed voltammograms. The peak shift is approximately linear with the IR-voltage, but exhibits a convex variation. The dependence of some parameters on the peaks due to the IR-drop is compared with those due to the negative capacitance. The latter is more conspicuous than the former under conventional conditions. The two effects cannot be distinguished specifically except for variations in the conductance of the solution.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New Analytical Expressions of Concentrations in Packed Bed Immobilized-Cell Electrochemical Photobioreactor 填料床固定化电化学光生物反应器中浓度的新解析表达式
Electrochem Pub Date : 2023-09-29 DOI: 10.3390/electrochem4040029
Ponraj Jeyabarathi, Marwan Abukhaled, Murugesan Kannan, Lakshmanan Rajendran, Michael E. G. Lyons
{"title":"New Analytical Expressions of Concentrations in Packed Bed Immobilized-Cell Electrochemical Photobioreactor","authors":"Ponraj Jeyabarathi, Marwan Abukhaled, Murugesan Kannan, Lakshmanan Rajendran, Michael E. G. Lyons","doi":"10.3390/electrochem4040029","DOIUrl":"https://doi.org/10.3390/electrochem4040029","url":null,"abstract":"An electrochemical photobioreactor with a packed bed containing transparent gel granules and immobilized photosynthetic bacterial cells is shown with a one-dimensional two-phase flow and transport model. We consider the biological/chemical events in the electrochemical photobioreactor, the intrinsically connected two-phase flow and mass transport, and other factors. This model is based on a system of nonlinear equations. This paper applies Akbari-Ganji’s and Taylor series methods to find analytical solutions to nonlinear differential equations that arise in an immobilized-cell electrochemical photobioreactor. Approximate analytical expressions of the concentration of glucose and hydrogen are obtained in liquid and gas phases for different parameter values. Numerical simulations are presented to validate the theoretical investigations.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecularly Imprinted Electrochemical Sensor Based on Poly (O-Phenylenediamine) for Sensitive Detection of Oxycodone in Water 基于聚邻苯二胺的分子印迹电化学传感器对水中羟考酮的灵敏检测
Electrochem Pub Date : 2023-09-28 DOI: 10.3390/electrochem4040028
Pranaya Charkravarthula, Amos Mugweru
{"title":"Molecularly Imprinted Electrochemical Sensor Based on Poly (O-Phenylenediamine) for Sensitive Detection of Oxycodone in Water","authors":"Pranaya Charkravarthula, Amos Mugweru","doi":"10.3390/electrochem4040028","DOIUrl":"https://doi.org/10.3390/electrochem4040028","url":null,"abstract":"This work was aimed at the development of a sensitive electrochemical detection method for oxycodone in water. Molecularly imprinted electrodes were formed by electro-polymerization process using o-phenylenediamine as a monomer. The electro-polymerization was performed on glassy carbon electrodes in the presence of oxycodone before the extraction of entrapped oxycodone molecules. Various electrochemical techniques were employed to monitor the polymerization and response of the fabricated electrodes toward oxycodone. These techniques included cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The oxycodone concentration was determined using SWV by measuring the change in the oxidation peak current of [Fe(CN)6]3−/4− in a 0.1 mM acetate buffer solution. At the optimal electro-polymerization conditions, a calibration curve of the current versus the concentration of oxycodone indicated a linear response at a region from 0.4 nM to 5.0 nM with a detection limit of 1.8 ± 0.239 nM. The MIP-modified electrode’s binding isotherm was fitted using a Langmuir model and showed an association constant, KA, of 1.12 × 106, indicating a high affinity of oxycodone molecules to binding sites. This sensor has the potential to act as an alternative method suitable for the on-site analysis of oxycodone.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory for Electrochemical Heat Sources and Exothermic Explosions: The Akbari–Ganji Method 电化学热源和放热爆炸理论:阿克巴里-甘吉法
Electrochem Pub Date : 2023-09-05 DOI: 10.3390/electrochem4030027
Ramalingam Vanaja, P. Jeyabarathi, Lakshmanan Rajendran, M. E. G. Lyons
{"title":"Theory for Electrochemical Heat Sources and Exothermic Explosions: The Akbari–Ganji Method","authors":"Ramalingam Vanaja, P. Jeyabarathi, Lakshmanan Rajendran, M. E. G. Lyons","doi":"10.3390/electrochem4030027","DOIUrl":"https://doi.org/10.3390/electrochem4030027","url":null,"abstract":"A device that transforms chemical energy into electrical energy is an electrochemical cell. The reaction type inside the cell determines whether it is exothermic or endothermic. This paper discusses the mathematical modelling of exothermic explosions in a slab. This model is based on a nonlinear equation containing a nonlinear term related to Arrhenius, bimolecular, and sensitised laws of reaction kinetics. The absolute temperature can be derived by solving the nonlinear equation using the Akbari–Ganji technique. The mathematical model also numerically solved and simulated in the MATLAB® v2016b software. The new simple theoretical result is validated with previously identified analytical and numerical findings. The influence of the parameters of Frank-Kamenetskii number, activation energy and the numerical exponent on temperature is discussed. The Frank-Kamenetskii number is observed to drop as the temperature is found to decrease, while the activation energy parameter is shown to increase. The numerical exponent has little or no effect on the temperature. An extension of this model to cylinder and sphere geometry is also provided.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75430309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications 基于食物垃圾的多种应用电化学平台的设计与开发
Electrochem Pub Date : 2023-08-14 DOI: 10.3390/electrochem4030026
Mansi Gandhi
{"title":"Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications","authors":"Mansi Gandhi","doi":"10.3390/electrochem4030026","DOIUrl":"https://doi.org/10.3390/electrochem4030026","url":null,"abstract":"Plants have a remarkable position among renewable materials because of their abundance, and nearly thousands of tons are consumed worldwide every day. Most unexploited plants and agricultural waste can be a real potential resource system. With increasing environmental awareness and the growing importance of friendly agricultural waste, crops and fruit waste can be used for efficient conversion into bio-fertilizers, biocarbons, bio-polymers, biosensors and bio-fibers. Global challenges based on limited natural resources and fossil energy reserves simulated keen interest in the development of various electrochemical systems inspired by food and plant scraps, which aid in curbing pollution. The successful adoption of a renewable energy roadmap is dependent on the availability of a cheaper means of storage. In order to cut down the cost of storage units, an improvement on energy storage devices having better stability, power, and energy density with low post-maintenance cost is the vital key. Although food and plant scraps have a huge need for energy storage, it has been extended to various sensing platform fabrications, which are eco-friendly and comparable to organic molecule-based sensors. Current research proclivity has witnessed a huge surge in the development of phyto-chemical-based sensors. The state-of-the-art progresses on the subsequent use of plant-waste systems as nano-engineered electrochemical platforms for numerous environmental science and renewable energy applications. Moreover, the relevant rationale behind the use of waste in a well-developed, sustainable future device is also presented in this review.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84173088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信