Empirical Software Engineering最新文献

筛选
英文 中文
Utilization of pre-trained language models for adapter-based knowledge transfer in software engineering 在软件工程中利用预训练语言模型进行基于适配器的知识转移
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-13 DOI: 10.1007/s10664-024-10457-5
Iman Saberi, Fatemeh Fard, Fuxiang Chen
{"title":"Utilization of pre-trained language models for adapter-based knowledge transfer in software engineering","authors":"Iman Saberi, Fatemeh Fard, Fuxiang Chen","doi":"10.1007/s10664-024-10457-5","DOIUrl":"https://doi.org/10.1007/s10664-024-10457-5","url":null,"abstract":"<p>Software Engineering (SE) Pre-trained Language Models (PLMs), such as CodeBERT, are pre-trained on large code corpora, and their learned knowledge has shown success in transferring into downstream tasks (e.g., code clone detection) through the fine-tuning of PLMs. In Natural Language Processing (NLP), an alternative in transferring the knowledge of PLMs is explored through the use of <i>adapter</i>, a compact and <b>parameter efficient</b> module that is inserted into a PLM. Although the use of adapters has shown promising results in many NLP-based downstream tasks, their application and exploration in SE-based downstream tasks are limited. Here, we study the knowledge transfer using adapters on multiple downstream tasks including cloze test, code clone detection, and code summarization. These adapters are trained on code corpora and are inserted into a PLM that is pre-trained on English corpora or code corpora. We called these PLMs as NL-PLM and C-PLM, respectively. We observed an improvement in results using NL-PLM over a PLM that does not have adapters, and this suggested that adapters can transfer and utilize useful knowledge from NL-PLM to SE tasks. The results are sometimes on par with or exceed the results of C-PLM; while being more efficient in terms of the number of parameters and training time. Interestingly, adapters inserted into a C-PLM generally yield better results than a traditional fine-tuned C-PLM. Our results open new directions to build more compact models for SE tasks.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"355 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adoption of automated software engineering tools and techniques in Thailand 泰国采用自动化软件工程工具和技术的情况
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-10 DOI: 10.1007/s10664-024-10472-6
Chaiyong Ragkhitwetsagul, Jens Krinke, Morakot Choetkiertikul, Thanwadee Sunetnanta, Federica Sarro
{"title":"Adoption of automated software engineering tools and techniques in Thailand","authors":"Chaiyong Ragkhitwetsagul, Jens Krinke, Morakot Choetkiertikul, Thanwadee Sunetnanta, Federica Sarro","doi":"10.1007/s10664-024-10472-6","DOIUrl":"https://doi.org/10.1007/s10664-024-10472-6","url":null,"abstract":"<p>Readiness for the adoption of Automated Software Engineering (ASE) tools and techniques can vary according to the size and maturity of software companies. ASE tools and techniques have been adopted by large or ultra-large software companies. However, little is known about the adoption of ASE tools and techniques in small and medium-sized software enterprises (SSMEs) in emerging countries, and the challenges faced by such companies. We study the adoption of ASE tools and techniques for software measurement, static code analysis, continuous integration, and software testing, and the respective challenges faced by software developers in Thailand, a developing country with a growing software economy which mainly consists of SSMEs (similar to other developing countries). Based on the answers from 103 Thai participants in an online survey, we found that Thai software developers are somewhat familiar with ASE tools and agree that adopting such tools would be beneficial. Most of the developers do not use software measurement or static code analysis tools due to a lack of knowledge or experience but agree that their use would be useful. Continuous integration tools have been used with some difficulties. Lastly, although automated testing tools are adopted despite several serious challenges, many developers are still testing the software manually. We call for improvements in ASE tools to be easier to use in order to lower the barrier to adoption in small and medium-sized software enterprises (SSMEs) in developing countries.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"61 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the characteristics and the role of visual issue reports 了解视觉问题报告的特点和作用
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-10 DOI: 10.1007/s10664-024-10459-3
Hiroki Kuramoto, Dong Wang, Masanari Kondo, Yutaro Kashiwa, Yasutaka Kamei, Naoyasu Ubayashi
{"title":"Understanding the characteristics and the role of visual issue reports","authors":"Hiroki Kuramoto, Dong Wang, Masanari Kondo, Yutaro Kashiwa, Yasutaka Kamei, Naoyasu Ubayashi","doi":"10.1007/s10664-024-10459-3","DOIUrl":"https://doi.org/10.1007/s10664-024-10459-3","url":null,"abstract":"<p>Issue reports are a pivotal interface between developers and users for receiving information about bugs in their products. In practice, reproducing those bugs is challenging, since issue reports often contain incorrect information or lack sufficient information. Furthermore, the poor quality of issue reports would have the effect of delaying the entire bug-fixing process. To enhance bug comprehension and facilitate bug reproduction, GitHub Issue allows users to embed visuals such as images and videos to complement the textual description. Hence, we conduct an empirical study on 34 active GitHub repositories to quantitatively analyze the difference between visual issue reports and non-visual ones, and qualitatively analyze the characteristics of visuals and the usage of visuals in bug types. Our results show that visual issue reports have a significantly higher probability of reporting bugs. Visual reports also tend to receive the first comment and complete the conversation in a relatively shorter time. Visuals are frequently used to present the program behavior and the user interface, with the major purpose of introducing problems in reports. Additionally, we observe that visuals are commonly used to report GUI-related bugs, but they are rarely used to report configuration bugs in comparison to non-visual issue reports. To summarize, our work highlights the role of visual play in the bug-fixing process and lays the foundation for future research to support bug comprehension by exploiting visuals.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"23 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward effective secure code reviews: an empirical study of security-related coding weaknesses 实现有效的安全代码审查:与安全相关的编码弱点实证研究
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-08 DOI: 10.1007/s10664-024-10496-y
Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, Christoph Treude
{"title":"Toward effective secure code reviews: an empirical study of security-related coding weaknesses","authors":"Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, Christoph Treude","doi":"10.1007/s10664-024-10496-y","DOIUrl":"https://doi.org/10.1007/s10664-024-10496-y","url":null,"abstract":"<p>Identifying security issues early is encouraged to reduce the latent negative impacts on the software systems. Code review is a widely-used method that allows developers to manually inspect modified code, catching security issues during a software development cycle. However, existing code review studies often focus on known vulnerabilities, neglecting coding weaknesses, which can introduce real-world security issues that are more visible through code review. The practices of code reviews in identifying such coding weaknesses are not yet fully investigated. To better understand this, we conducted an empirical case study in two large open-source projects, OpenSSL and PHP. Based on 135,560 code review comments, we found that reviewers raised security concerns in 35 out of 40 coding weakness categories. Surprisingly, some coding weaknesses related to past vulnerabilities, such as memory errors and resource management, were discussed less often than the vulnerabilities. Developers attempted to address raised security concerns in many cases (39%-41%), but a substantial portion was merely acknowledged (30%-36%), and some went unfixed due to disagreements about solutions (18%-20%). This highlights that coding weaknesses can slip through code review even when identified. Our findings suggest that reviewers can identify various coding weaknesses leading to security issues during code reviews. However, these results also reveal shortcomings in current code review practices, indicating the need for more effective mechanisms or support for increasing awareness of security issue management in code reviews.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"204 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The untold impact of learning approaches on software fault-proneness predictions: an analysis of temporal aspects 学习方法对软件故障倾向性预测的不可言喻的影响:时间方面的分析
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-08 DOI: 10.1007/s10664-024-10454-8
Mohammad Jamil Ahmad, Katerina Goseva-Popstojanova, Robyn R. Lutz
{"title":"The untold impact of learning approaches on software fault-proneness predictions: an analysis of temporal aspects","authors":"Mohammad Jamil Ahmad, Katerina Goseva-Popstojanova, Robyn R. Lutz","doi":"10.1007/s10664-024-10454-8","DOIUrl":"https://doi.org/10.1007/s10664-024-10454-8","url":null,"abstract":"<p>This paper aims to improve software fault-proneness prediction by investigating the unexplored effects on classification performance of the temporal decisions made by practitioners and researchers regarding (i) the interval for which they will collect longitudinal features (software metrics data), and (ii) the interval for which they will predict software bugs (the target variable). We call these specifics of the data used for training and of the target variable being predicted the <i>learning approach</i>, and explore the impact of the two most common learning approaches on the performance of software fault-proneness prediction, both within a single release of a software product and across releases. The paper presents empirical results from a study based on data extracted from 64 releases of twelve open-source projects. Results show that the learning approach has a substantial, and typically unacknowledged, impact on classification performance. Specifically, we show that one learning approach leads to significantly better performance than the other, both within-release and across-releases. Furthermore, this paper uncovers that, for within-release predictions, the difference in classification performance is due to different levels of class imbalance in the two learning approaches. Our findings show that improved specification of the learning approach is essential to understanding and explaining the performance of fault-proneness prediction models, as well as to avoiding misleading comparisons among them. The paper concludes with some practical recommendations and research directions based on our findings toward improved software fault-proneness prediction.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"65 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges, adaptations, and fringe benefits of conducting software engineering research with human participants during the COVID-19 pandemic 在 COVID-19 大流行期间与人类参与者一起开展软件工程研究的挑战、适应性和附带利益
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-07 DOI: 10.1007/s10664-024-10490-4
Anuradha Madugalla, Tanjila Kanij, Rashina Hoda, Dulaji Hidellaarachchi, Aastha Pant, Samia Ferdousi, John Grundy
{"title":"Challenges, adaptations, and fringe benefits of conducting software engineering research with human participants during the COVID-19 pandemic","authors":"Anuradha Madugalla, Tanjila Kanij, Rashina Hoda, Dulaji Hidellaarachchi, Aastha Pant, Samia Ferdousi, John Grundy","doi":"10.1007/s10664-024-10490-4","DOIUrl":"https://doi.org/10.1007/s10664-024-10490-4","url":null,"abstract":"<p>The COVID-19 pandemic changed the way we live, work and the way we conduct research. With the restrictions of lockdowns and social distancing, various impacts were experienced by many software engineering researchers, especially whose studies depend on human participants. We conducted a mixed methods study to understand the extent of this impact. Through a detailed survey with 89 software engineering researchers working with human participants around the world and a further nine follow-up interviews, we identified the key challenges faced, the adaptations made, and the surprising fringe benefits of conducting research involving human participants during the pandemic. Our findings also revealed that in retrospect, many researchers did not wish to revert to the old ways of conducting human-orienfted research. Based on our analysis and insights, we share recommendations on how to conduct remote studies with human participants effectively in an increasingly hybrid world when face-to-face engagement is not possible or where remote participation is preferred.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"238 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing and classifying developer forum posts with their intentions 根据开发者的意图对其论坛帖子进行定性和分类
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-05 DOI: 10.1007/s10664-024-10487-z
Xingfang Wu, Eric Laufer, Heng Li, Foutse Khomh, Santhosh Srinivasan, Jayden Luo
{"title":"Characterizing and classifying developer forum posts with their intentions","authors":"Xingfang Wu, Eric Laufer, Heng Li, Foutse Khomh, Santhosh Srinivasan, Jayden Luo","doi":"10.1007/s10664-024-10487-z","DOIUrl":"https://doi.org/10.1007/s10664-024-10487-z","url":null,"abstract":"<p>With the rapid growth of the developer community, the amount of posts on online technical forums has been growing rapidly, which poses difficulties for users to filter useful posts and find important information. Tags provide a concise feature dimension for users to locate their interested posts and for search engines to index the most relevant posts according to the queries. Most tags are only focused on the technical perspective (e.g., program language, platform, tool). In most cases, forum posts in online developer communities reveal the author’s intentions to solve a problem, ask for advice, share information, etc. The modeling of the intentions of posts can provide an extra dimension to the current tag taxonomy. By referencing previous studies and learning from industrial perspectives, we create a refined taxonomy for the intentions of technical forum posts. Through manual labeling and analysis on a sampled post dataset extracted from online forums, we understand the relevance between the constitution of posts (code, error messages) and their intentions. Furthermore, inspired by our manual study, we design a pre-trained transformer-based model to automatically predict post intentions. The best variant of our intention prediction framework, which achieves a Micro F1-score of 0.589, Top 1-3 accuracy of 62.6% to 87.8%, and an average AUC of 0.787, outperforms the state-of-the-art baseline approach. Our characterization and automated classification of forum posts regarding their intentions may help forum maintainers or third-party tool developers improve the organization and retrieval of posts on technical forums.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VulNet: Towards improving vulnerability management in the Maven ecosystem VulNet:改进 Maven 生态系统中的漏洞管理
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-05 DOI: 10.1007/s10664-024-10448-6
Zeyang Ma, Shouvick Mondal, Tse-Hsun (Peter) Chen, Haoxiang Zhang, Ahmed E. Hassan
{"title":"VulNet: Towards improving vulnerability management in the Maven ecosystem","authors":"Zeyang Ma, Shouvick Mondal, Tse-Hsun (Peter) Chen, Haoxiang Zhang, Ahmed E. Hassan","doi":"10.1007/s10664-024-10448-6","DOIUrl":"https://doi.org/10.1007/s10664-024-10448-6","url":null,"abstract":"<p>Developers rely on software ecosystems such as Maven to manage and reuse external libraries (i.e., dependencies). Due to the complexity of the used dependencies, developers may face challenges in choosing which library to use and whether they should upgrade or downgrade a library. One important factor that affects this decision is the number of potential vulnerabilities in a library and its dependencies. Therefore, state-of-the-art platforms such as Maven Repository (MVN) and Open Source Insights (OSI) help developers in making such a decision by presenting vulnerability information associated with every dependency. In this paper, we first conduct an empirical study to understand how the two platforms, MVN and OSI, present and categorize vulnerability information. We found that these two platforms may either overestimate or underestimate the number of associated vulnerabilities in a dependency, and they lack prioritization mechanisms on which dependencies are more likely to cause an issue. Hence, we propose a tool named VulNet to address the limitations we found in MVN and OSI. Through an evaluation of 19,886 versions of the top 200 popular libraries, we find VulNet includes 90.5% and 65.8% of the dependencies that were omitted by MVN and OSI, respectively. VulNet also helps reduce 27% of potentially unreachable or less impactful vulnerabilities listed by OSI in test dependencies. Finally, our user study with 24 participants gave VulNet an average rating of 4.5/5 in presenting and prioritizing vulnerable dependencies, compared to 2.83 (MVN) and 3.14 (OSI).</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"38 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards automatic labeling of exception handling bugs: A case study of 10 years bug-fixing in Apache Hadoop 实现异常处理错误的自动标记:Apache Hadoop 10 年错误修复案例研究
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-05 DOI: 10.1007/s10664-024-10494-0
Antônio José A. da Silva, Renan G. Vieira, Diego P. P. Mesquita, João Paulo P. Gomes, Lincoln S. Rocha
{"title":"Towards automatic labeling of exception handling bugs: A case study of 10 years bug-fixing in Apache Hadoop","authors":"Antônio José A. da Silva, Renan G. Vieira, Diego P. P. Mesquita, João Paulo P. Gomes, Lincoln S. Rocha","doi":"10.1007/s10664-024-10494-0","DOIUrl":"https://doi.org/10.1007/s10664-024-10494-0","url":null,"abstract":"&lt;h3 data-test=\"abstract-sub-heading\"&gt;Context&lt;/h3&gt;&lt;p&gt;Exception handling (EH) bugs stem from incorrect usage of exception handling mechanisms (EHMs) and often incur severe consequences (e.g., system downtime, data loss, and security risk). Tracking EH bugs is particularly relevant for contemporary systems (e.g., cloud- and AI-based systems), in which the software’s sophisticated logic is an additional threat to the correct use of the EHM. On top of that, bug reporters seldom can tag EH bugs — since it may require an encompassing knowledge of the software’s EH strategy. Surprisingly, to the best of our knowledge, there is no automated procedure to identify EH bugs from report descriptions.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Objective&lt;/h3&gt;&lt;p&gt;First, we aim to evaluate the extent to which Natural Language Processing (NLP) and Machine Learning (ML) can be used to reliably label EH bugs using the text fields from bug reports (e.g., summary, description, and comments). Second, we aim to provide a reliably labeled dataset that the community can use in future endeavors. Overall, we expect our work to raise the community’s awareness regarding the importance of EH bugs.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Method&lt;/h3&gt;&lt;p&gt;We manually analyzed 4,516 bug reports from the four main components of Apache’s Hadoop project, out of which we labeled &lt;span&gt;(approx 20%)&lt;/span&gt; (943) as EH bugs. We also labeled 2,584 non-EH bugs analyzing their bug-fixing code and creating a dataset composed of 7,100 bug reports. Then, we used word embedding techniques (Bag-of-Words and TF-IDF) to summarize the textual fields of bug reports. Subsequently, we used these embeddings to fit five classes of ML methods and evaluate them on unseen data. We also evaluated a pre-trained transformer-based model using the complete textual fields. We have also evaluated whether considering only EH keywords is enough to achieve high predictive performance.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Results&lt;/h3&gt;&lt;p&gt;Our results show that using a pre-trained DistilBERT with a linear layer trained with our proposed dataset can reasonably label EH bugs, achieving ROC-AUC scores of up to 0.88. The combination of NLP and ML traditional techniques achieved ROC-AUC scores of up to 0.74 and recall up to 0.56. As a sanity check, we also evaluate methods using embeddings extracted solely from keywords. Considering ROC-AUC as the primary concern, for the majority of ML methods tested, the analysis suggests that keywords alone are not sufficient to characterize reports of EH bugs, although this can change based on other metrics (such as recall and precision) or ML methods (e.g., Random Forest).&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Conclusions&lt;/h3&gt;&lt;p&gt;To the best of our knowledge, this is the first study addressing the problem of automatic labeling of EH bugs. Based on our results, we can conclude that the use of ML techniques, specially transformer-base models, sounds promising to automate the task of labeling","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"23 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards understanding barriers and mitigation strategies of software engineers with non-traditional educational and occupational backgrounds 了解具有非传统教育和职业背景的软件工程师面临的障碍和缓解策略
IF 4.1 2区 计算机科学
Empirical Software Engineering Pub Date : 2024-06-04 DOI: 10.1007/s10664-024-10493-1
Tavian Barnes, Ken Jen Lee, Cristina Tavares, Gema Rodríguez-Pérez, Meiyappan Nagappan
{"title":"Towards understanding barriers and mitigation strategies of software engineers with non-traditional educational and occupational backgrounds","authors":"Tavian Barnes, Ken Jen Lee, Cristina Tavares, Gema Rodríguez-Pérez, Meiyappan Nagappan","doi":"10.1007/s10664-024-10493-1","DOIUrl":"https://doi.org/10.1007/s10664-024-10493-1","url":null,"abstract":"<p>The traditional path to a software engineering career usually involves a post-secondary diploma in Software Engineering, Computer Science, or a related field. However, many individuals working as software engineers take a non-traditional path to their careers, starting from other industries or fields of study. This paper explores the barriers that individuals with non-traditional educational and occupational backgrounds face when pursuing a software engineering career and potential strategies to overcome those barriers. A two-stage methodology was used, consisting of an exploratory study followed by a follow-up survey. The exploratory study consisted of a grounded-theory-based qualitative analysis of relevant Reddit data to yield a framework around the barriers and possible mitigation strategies. These findings were then supplemented through a follow-up survey. Understanding these barriers and what strategies could be effective is an important step towards making software engineering more accessible to individuals with non-traditional backgrounds. In addition to fostering functional diversity, this might also serve to tackle labor shortages within the software engineering industry.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"34 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信