{"title":"Erratum: Excellent Rate Capability of MgO-Templated Mesoporous Carbon as an Na-Ion Energy Storage Material [ECS Electrochem. Lett., 4, A22 (2015)]","authors":"Y. Kado, Y. Soneda, N. Yoshizawa","doi":"10.1149/2.0041503EEL","DOIUrl":"https://doi.org/10.1149/2.0041503EEL","url":null,"abstract":"","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0041503EEL","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64316154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fault Current Measurements during Crush Testing of Electrically Parallel Lithium-Ion Battery Modules","authors":"James Marcicki, X. Yang, Phil Rairigh","doi":"10.1149/2.0011509EEL","DOIUrl":"https://doi.org/10.1149/2.0011509EEL","url":null,"abstract":"Experimental data is presented from crush testing of 1S4P battery modules that quantifies the fault currents experienced by each cell after the onset of an internal short circuit. Combined with voltage and temperature measurements, the newly proposed method for measuring fault currents provides a more complete picture of the module failure during abusive crush. Short circuit resistance trends versus time are calculated from the current measurements, indicating approximately 20 milliohms resistance values prior to thermal runaway and resistive heat generation on the order of hundreds of watts. Language: en","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0011509EEL","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64303718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aishuak Konarov, D. Gosselink, Yongguang Zhang, Ye Tian, Diana Askhatova, Pu Chen
{"title":"Self-Discharge of Rechargeable Hybrid Aqueous Battery","authors":"Aishuak Konarov, D. Gosselink, Yongguang Zhang, Ye Tian, Diana Askhatova, Pu Chen","doi":"10.1149/2.0111512EEL","DOIUrl":"https://doi.org/10.1149/2.0111512EEL","url":null,"abstract":"Self-discharge refers to the loss in stored charge of a battery without connection between its electrodes as a consequence of internal chemical reactions. Self-discharge processes can be tested in a loadfree state for a fixed time. Two self-discharge reactions are possible in a Li-ion cell: one is chemical and the other electrochemical. Because of their reactivity, charged cells can undergo side reactions, and factors such as purity of the active material or electrolyte, the specific surface area of the electrodes, conductors, binders or separators can have effect on the self-discharge performance. These reactions are mostly irreversible while electrochemical reactions can be reversible. For example, lithium re-intercalation can lead to self-discharge of Li-ion batteries, as has been demonstrated by many researchers who have studied the different factors that could affect self-discharge of","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0111512EEL","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64344483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanchit Khurana, Derek M. Hall, Rich S. Schatz, S. Lvov
{"title":"Effect of Clamping Pressure and Temperature on the Performance of a CuCl(aq)/HCl(aq) Electrolyzer","authors":"Sanchit Khurana, Derek M. Hall, Rich S. Schatz, S. Lvov","doi":"10.1149/2.0011504EEL","DOIUrl":"https://doi.org/10.1149/2.0011504EEL","url":null,"abstract":"A significance performance limitation for a CuCl(aq)/HCl(aq) electrolytic cell is the ohmic losses associated with the contact resistance. The contact resistance between the flow field channels of the end plate and the carbon cloth electrodes plays a significant part in ensuring good electrical connection. The contact resistance is heavily dependent on the clamping pressure, and despite the link between compressionandelectrochemicalperformance,therearenopublished results related to optimum amount of pressure needed to assemble a CuCl(aq)/HCl(aq) electrolytic cell. While insufficient clamping pressuremayresultinhighelectricalresistanceattheelectrodes/flow-field channel interface, a high clamping pressure could lead to mechanical deformation of the MEA and uneven pressure distribution. An excessive compression pressure also increases the mass transport problems with a reduction in cell performance at high current densities. 9,10 In this study, an optimum value of the compression pressure resulting from torque on the bolts that clamp the cell was observed to be 20 Nm. Also, this study highlights the increase in performance of a CuCl(aq)/HCl(aq) electrolyzer by increasing the temperature from 40 to 80 ◦ C.","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0011504EEL","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64303338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}