{"title":"Evolution of the thalamus: a morphological and functional review","authors":"A. Butler","doi":"10.1017/S1472928808000356","DOIUrl":"https://doi.org/10.1017/S1472928808000356","url":null,"abstract":"Enlargement of the forebrain, including elaboration of the thalamus, has occurred independently within different groups of vertebrates. Dorsal and ventral thalamic territories can be identified in most vertebrates, with variations in the presence of GABAergic neuronal components. An inhibitory thalamic reticular nucleus-like input to the dorsal thalamus might be a common feature, as might the organizational plan of two divisions of the dorsal thalamus, the lemnothalamus and collothalamus. Differential, independent elaboration of these divisions occurred in mammals and sauropsids (reptiles and birds), making their evolutionary relationships challenging to discern. Not all of the crucial features identified for mammalian thalamocortical circuitry are present in other vertebrates, but birds share the most features identified to date. These include specific and nonspecific thalamic relay neurons, reciprocal pallial projections, and a GABAergic thalamic reticular nucleus with some but not all hodological features. Because birds share many higher-level cognitive abilities and, thus, possibly higher-level consciousness, with mammals, comparison of the thalamocortical (thalamopallial) circuitry might prove a fruitful resource for testing functional hypotheses. Comparisons with selected other vertebrates that likewise have relatively large brain:body ratios and also exhibit some cognitively sophisticated behaviors, such as cichlid fish, might also prove valuable.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125279854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast oscillations in activated neocortical brain slices: an in vitro continuation of the pioneering in vivo studies of Mircea Steriade and colleagues","authors":"R. Traub, M. Cunningham, M. Whittington","doi":"10.1017/S1472928808000344","DOIUrl":"https://doi.org/10.1017/S1472928808000344","url":null,"abstract":"The seminal in vivo work of Mircea Steriade and his colleagues has, as is always the case with the most insightful and creative scientists, raised many serious questions: questions, for example, of the detailed cellular and molecular mechanisms of the phenomena they discovered. In our tribute to this great investigator, we shall present some examples, based on our in vitro and modeling work, that shed light on some of his remarkable breakthroughs: the slow oscillation of sleep ( 70 Hz) oscillations.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124996380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. H. Kim, D. Veldhuijzen, W. Anderson, J. I. Lee, H. T. Lee, S. Ohara, F. Lenz
{"title":"Pain and temperature encoding in the human thalamic somatic sensory nucleus (ventral caudal): Inhibition-related bursting mediates sensations evoked by somatic stimuli","authors":"J. H. Kim, D. Veldhuijzen, W. Anderson, J. I. Lee, H. T. Lee, S. Ohara, F. Lenz","doi":"10.1017/S1472928807000301","DOIUrl":"https://doi.org/10.1017/S1472928807000301","url":null,"abstract":"","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129961777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The influence of one, powerful thalamocortical neuron on an inhibitory cortical circuit","authors":"H. Swadlow, A. G. Gusev","doi":"10.1017/S147292880700026X","DOIUrl":"https://doi.org/10.1017/S147292880700026X","url":null,"abstract":"","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114415251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Is the basalo-cortical system simply an extra-thalamic relay of the ascending reticular activating system? A discourse with Mircea Steriade","authors":"B. Jones","doi":"10.1017/S1472928807000271","DOIUrl":"https://doi.org/10.1017/S1472928807000271","url":null,"abstract":"As established in early studies, the basalo-cortical system serves as an extra-thalamic relay from the brainstem reticular activating system to the cerebral cortex. As Mircea Steriade documented, activating impulses are transmitted through either the nonspecific thalamo-cortical projection system or the basalo-cortical projection system to stimulate widespread, fast, cortical activity that is characteristic of the activation that occurs naturally during waking (W) and paradoxical sleep (PS) states. However, basal forebrain (BF) neurons are different from thalamic neurons in several ways. First, many cortically projecting BF neurons utilize acetylcholine (ACh), which has a crucial role in stimulating fast cortical activity. Second, ACh-releasing neurons discharge selectively during W and PS and cease firing during slow-wave sleep (SWS). Third, ACh-releasing neurons discharge rhythmically in bursts during cortical activation and can, thus, modulate the cortex in a slow rhythmic manner to facilitate coherent activity across broad cortical networks. Fourth, the rhythmic discharge by BF neurons that release ACh, GABA or glutamate and project to the cortex occurs at respiratory or theta frequencies of the olfactory and limbic cortices, which reveals the particular importance of these inputs as well as outputs within basalo-cortico-basalo circuits. Fifth, other noncholinergic BF neurons, including GABA-releasing neurons, are active selectively during sleep: some of these potentially promote slow-wave activity during SWS through cortical projections; and others might promote behavioral quiescence during SWS and PS through descending projections. Finally, BF neurons also project to the thalamus and might, thus, either recruit or join thalamic neurons in modulating cortical activity across the sleep–waking cycle.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130134126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of neurons in the paraventricular thalamic nucleus by α 2 adrenoceptor agonists: evidence for physiological and morphological heterogeneity","authors":"U. Heilbronner, G. Flügge","doi":"10.1017/S1472928807000313","DOIUrl":"https://doi.org/10.1017/S1472928807000313","url":null,"abstract":"The paraventricular thalamic nucleus (PVT) receives dense noradrenergic input, but little is known about α 2 adrenoceptors (ARs) in this nucleus. We have investigated effects of the agonist α-methyl-norepinephrine (m-NE) on PVT neurons in vitro. Based on their physiological and morphological characteristics, three distinct classes of PVT neurons have been identified. The first class exhibits membrane hyperpolarization on stimulation with m-NE (0.05–25 µM). This hyperpolarizing effect is observed in the presence of tetrodotoxin (TTX; 0.5–1 µM), blocked by yohimbine (1 µM) and mimicked by clonidine (10 µM), which indicates that it is mediated by postsynaptic α 2 ARs. Further experiments indicate that it is mediated through an increase in G protein-coupled K + conductance. In a second class of neurons, m-NE (0.05–25 µM) induces a slow membrane depolarization that is mimicked by phenylephrine (5 µM) and blocked by prazosin (75 nM), which indicates the involvement of α 1 ARs. The third class of neurons is insensitive to m-NE (5–25 µM), and has a lower input resistance and a larger dendritic tree compared to the two other classes. The three types of neurons differ in their resting properties, and their firing patterns are changed by m-NE. These findings indicate anatomical and functional specialization of PVT neurons.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122921107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biophysical mechanisms underlying the paradoxical potentiation of the low-voltage activated calcium current in thalamocortical neurons: a modeling study","authors":"R. Lambert, T. Bessaïh, N. Leresche","doi":"10.1017/S1472928807000179","DOIUrl":"https://doi.org/10.1017/S1472928807000179","url":null,"abstract":"In thalamocortical neurons relaying sensory information, we recently described a phosphorylation mechanism that induces a marked increase in the amplitude of the low-voltage activated Ca 2þ current (T-type). Surprisingly, potentiation of the T-current closely depends on the state of the channel and is, therefore, both voltage-and ATP-dependent. Further analysis of the modification of channel activity induced by this regulation, and underlying the increase in the macroscopic current amplitude, requires a detailed study of the T-current biophysical properties that, unfortunately, might be constrained by the technical limitations of whole-cell recordings. Therefore, in the present study we have developed an alternative approach that is based on computational models of T-channel activity using Markov gating schemes. We show that both modifications in the activation kinetics of the channels and/or the existence of a second channel population with a conducting state conditioned by a phosphorylation step can explain the specific properties of T-currents that have been observed in thalamocortical neurons as a result of their ATP/voltage-dependent regulation. The flexibility in the T-type current behavior that is incorporated in these models might also help to unravel new roles for T-channels in shaping the different firing properties of thalamocortical neurons.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129639985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local circuit connections in thalamo-recipient layers","authors":"A. Thomson","doi":"10.1017/S1472928807000246","DOIUrl":"https://doi.org/10.1017/S1472928807000246","url":null,"abstract":"","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116422004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental and functional profile of the thalamic hyperpolarization-activated cation current, I h , in absence epilepsy","authors":"H. Pape, T. Kanyshkova, T. Broicher, T. Budde","doi":"10.1017/S1472928807000180","DOIUrl":"https://doi.org/10.1017/S1472928807000180","url":null,"abstract":"Recent findings in two rat models of absence epilepsy, the Wistar Albino Glaxo Rats from Rijswik (WAG/Rij) and the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), support the idea that defects in the function of hyperpolarization-activated, cyclic nucleotide-gated cation channels (HCN1-4) and the resulting membrane current, I h , in thalamocortical relay neurons are crucially involved in epilepsy. After a developmental evolution the expression of HCN1, which is relatively insensitive to cAMP, is elevated significantly in epileptic rats with no changes in expression of the other isoforms. This is accompanied by a hyperpolarizing shift in I h activation and reduced sensitivity to cAMP. Thus, modification of thalamic I h occurs at pre-epileptic stages and seems to be crucial to the development of spike-and-wave-discharges that characterize absence seizures.","PeriodicalId":114195,"journal":{"name":"Thalamus and Related Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130136337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}