M. Sandıkkaya, Baran Güryuva, Ö. Kale, Oğuz Okçu, Abdullah İçen, E. Yenier, S. Akkar
{"title":"An updated strong-motion database of Türkiye (SMD-TR)","authors":"M. Sandıkkaya, Baran Güryuva, Ö. Kale, Oğuz Okçu, Abdullah İçen, E. Yenier, S. Akkar","doi":"10.1177/87552930231208158","DOIUrl":"https://doi.org/10.1177/87552930231208158","url":null,"abstract":"We updated the earthquake strong-motion database of Türkiye (SMD-TR) that is initially compiled by Akkar et al. The updated data set consists of of 9244 earthquakes of magnitudes 3.0 ≤ M ≤ 7.8 that occurred between 1976 and 2023. It includes 95,890 three-component waveforms recorded at 1022 stations (55,375 records that are processed from 6710 events and 974 stations). The database is disseminated under research-oriented website DesignSafe ( https://doi.org/10.17603/ds2-f21x-s189 ) and is compiled to provide ground-motion flatfile, which will be updated periodically until 2025. The released version includes events occurred in Türkiye until 28 February 2023, and hence, it comprises of the mainshocks and a great portion of aftershocks from the February 6th, 2023, Kahramanmaraş earthquakes. The database includes event metadata compiled from national and international seismological agencies as well as the literature. We classified events according to their tectonic environments (i.e. active crustal and subduction) and identified the aftershocks. The station information provided by AFAD1 was used to compute the major site parameters, including time-based average of shear-wave velocity of uppermost 30 m (VS30) and depth-to-rock horizon at which the shear-wave velocity (VS) attains 1 km/s (Z1). We also computed the finite-fault distance metrics and flagged the stations located on the hanging-wall side of the rupture, as well as identified pulse-like records. We developed an automatic processing algorithm to determine the waveform quality, apply appropriate filtercut-offs to remove low- and high-frequency noise, and compute ground-motion parameters. The automatic processing was applied to small-magnitude (M < 5.5) events, whereas manual processing scheme is preferred for waveforms recorded from larger events (M ≥ 5.5). The peak ground-motion values, spectral ordinates, and ground-motion duration are provided along with the key data processing parameters in the flatfile.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"36 3","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher A de la Torre, Brendon A. Bradley, Felipe Kuncar, Robin L. Lee, Liam M. Wotherspoon, Anna Kaiser
{"title":"Combining observed linear basin amplification factors with 1D nonlinear site-response analyses to predict site response for strong ground motions: Application to Wellington, New Zealand","authors":"Christopher A de la Torre, Brendon A. Bradley, Felipe Kuncar, Robin L. Lee, Liam M. Wotherspoon, Anna Kaiser","doi":"10.1177/87552930231209726","DOIUrl":"https://doi.org/10.1177/87552930231209726","url":null,"abstract":"This study develops a method for estimating site amplification that combines instrumentally observed site-specific amplification factors with adjustment factors from nonlinear site-response analyses. This approach provides estimates of site response for large-strain motions based on observations and sophisticated nonlinear modeling. A database of weak-to-moderate intensity ground motions recorded in three basins of Wellington, New Zealand is used to study the observed site amplification. A subset of nine strong-motion stations was selected to perform nonlinear site-response analyses with scaled strong ground motions to assess the influence of nonlinearity on site amplification factors and demonstrate the approach. Different shear-wave velocity ( VS) profiles, constitutive models, and modeling approaches (e.g. one-dimensional (1D) site-response analyses vs empirical [Formula: see text]-based approaches) are used to quantify the sensitivity and modeling uncertainty in the nonlinear site-response analyses. It was found that for soft sites subjected to strong ground motions, there may be a decrease in spectral acceleration amplification factors for periods up to approximately 2 s, relative to the expected linear site response. For longer periods, there is little to no amplification from the effects of soil nonlinearity. However, at stiffer sites, which generally experience less basin amplification in observations, there may be moderate amplification at longer periods when nonlinearity is considered due to softening of the soil profile. Empirical ground-motion models were found to under-represent the observed amplification between basin sites and the nearby reference site, especially at intermediate to long periods, corresponding to resonant frequencies of these basin sites. In addition, the empirical nonlinear site amplification models ([Formula: see text]-based) were found to deviate from nonlinear analyses at large strains, where such models are poorly constrained due to such a limited number of observations.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"13 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138592808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Rezaeian, Jonathan P Stewart, N. Luco, C. Goulet
{"title":"Findings from a decade of ground motion simulation validation research and a path forward","authors":"S. Rezaeian, Jonathan P Stewart, N. Luco, C. Goulet","doi":"10.1177/87552930231212475","DOIUrl":"https://doi.org/10.1177/87552930231212475","url":null,"abstract":"Simulated ground motions have the potential to advance seismic hazard assessments and structural response analyses, particularly for conditions with limited recorded ground motions such as large magnitude earthquakes at short source-to-site distances. However, rigorous validation of simulated ground motions is needed for hazard analysts, practicing engineers, or regulatory bodies to be confident in their use. A decade ago, validation exercises were mainly limited to comparisons of simulated-to-observed waveforms and median values of spectral accelerations for selected earthquakes. The Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) group was formed to increase coordination between simulation modelers and research engineers with the aim of devising and applying more effective methods for simulation validation. Here, we summarize what has been learned in over a decade of GMSV activities, principally reflecting the views of the SCEC research community but also extending our findings and suggestions for a path forward to broader United States and worldwide simulation validation efforts. We categorize different validation methods according to their approach and the metrics considered. Two general approaches are to compare validation metrics from simulations to those from historical records or to those from semi-empirical models. Validation metrics are categorized into ground motion characteristics and structural responses. We discuss example validation studies that have been impactful in the past decade and suggest future research directions. Key lessons learned are that validation is application-specific, our outreach and dissemination need improvement, and much validation-related research remains unexplored.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"99 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fault-displacement models for aggregate and principal displacements","authors":"Grigorios Lavrentiadis, Norman Abrahamson","doi":"10.1177/87552930231201531","DOIUrl":"https://doi.org/10.1177/87552930231201531","url":null,"abstract":"New fault-displacement models (FDMs) are developed for the aggregate and principal net surface displacement using the database developed by the Fault Displacement Hazard Initiative Project. An FDM for the aggregate displacement is developed, which is then partitioned into principal and distributed displacements. The model for the aggregate displacement is first formulated in the wavenumber domain to incorporate seismology-based constraints for the extrapolation of the magnitude scaling of median displacements to large-magnitude events. The results from the wavenumber-domain model are then adjusted to fit the empirical moderate-magnitude scaling (M < 7) and the shape of the displacement profile at the ends of the rupture. Segments are used in the model development to better capture the complexity of the variability of the surface-displacement profile along strike, including regions with zero displacements. For applications in which segments cannot be identified, simplified FDMs without segments are developed that treat the number, lengths, and locations of the segments as aleatory variability. The principal-displacement FDM is then developed as an adjustment to the aggregate-displacement FDM. The segmentation and the magnitude dependence of the taper length of individual segments lead to non-self-similar scaling of the median profile along the entire rupture that can have a significant impact on probabilistic fault-displacement hazard analysis (PFDHA) for sites near the ends of faults. A key feature of the new FDMs is the use of a power-normal [Formula: see text] distribution for the aleatory variability, which leads to narrower distributions of the displacement for large-magnitude earthquakes compared to the commonly used lognormal distribution. For large-magnitude earthquakes, the expected maximum displacements computed using the power-normal distribution of the FDM are consistent with the observed maximum displacements along strike, supporting the narrower shape of the upper tail of the power-normal distribution for large-magnitude events.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"21 11","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yefei Ren, Yuting Zhang, Kun Ji, R. Wen, T. Kishida, Xinxin Yao
{"title":"Site classification scheme based on geological age and genesis for Xinjiang and the Capital Metropolitan areas of China","authors":"Yefei Ren, Yuting Zhang, Kun Ji, R. Wen, T. Kishida, Xinxin Yao","doi":"10.1177/87552930231213363","DOIUrl":"https://doi.org/10.1177/87552930231213363","url":null,"abstract":"The site classification map is one of the vital inputs in earthquake disaster scenario prediction and risk modeling that provides a perspective of proxy-based methods. In China, a systematic empirical relationship between geological age, genesis, and site class in the practice of site classification has yet to be established. In this study, data from 1:500,000 geological maps and thousands of engineering boreholes in the Xinjiang Uygur Autonomous Region and the Capital Metropolitan area in China were collected, and different types of geological unit were classified according to 10 types of geological age and 18 types of geological genesis. A site classification scheme was proposed on the basis of geological age, geological genesis, statistical properties of boreholes, and lithological descriptions. Borehole characteristics were investigated in terms of their proportions among the different site classes, and the mean and standard deviation of V S30. Accordingly, a chart correlating four site classes (B, C, D, and E) with each type of geological age and genesis was developed that could be used as a practical tool in regional site classification. Site classification maps were delineated in both areas using the proposed scheme and compared with those derived from the topographic slope-proxy method and another geology-proxy method, and the results showed that it is effective in identifying the site class, especially for class E sites, and probably class B that inferred by the qualitative evaluation. Moreover, the applicability of the method has also been confirmed in areas outside the study area. It is anticipated that it could provide a technical template for nationwide site classification using geological maps.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"121 4","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangbo Wang, Yaowen Zhang, Xuchuan Lin, Zhenning Ba
{"title":"City-scale buildings damage estimation based on broadband physics-based ground motion simulation of 2021 Ms 6.4 Yangbi, China, earthquake","authors":"Fangbo Wang, Yaowen Zhang, Xuchuan Lin, Zhenning Ba","doi":"10.1177/87552930231213072","DOIUrl":"https://doi.org/10.1177/87552930231213072","url":null,"abstract":"This article proposed a computational workflow for city-scale building damage estimation based on broadband physics-based ground motion simulation. The dynamic stiffness matrix method in frequency-wavenumber domain is employed for broadband physics-based ground motion simulation of finite fault along with site response correction using equivalent-linear site response analysis approach. With simulated ground motion, seismic response of buildings, using multi-degree of freedom model, is simulated using nonlinear time history analysis, and building damage is evaluated based on a trilinear backbone curve of story’s nonlinear force-drift model. Main advantage of the framework lies in the employed dynamic stiffness matrix method for ground motion simulation, which can efficiently generate broadband ground motions in perfect parallel and naturally capture the physics of finite fault source, propagation path, and spatial variability characteristics of ground motion. To demonstrate the salient features of proposed workflow, the 2021 Ms 6.4 Yangbi earthquake is simulated with frequency resolution up to 20 Hz, and seismic damage of buildings in Yangbi county are estimated. Results show that most traditional wood-adobe structures suffer moderate to severe damage, and engineered seismic buildings (mostly RC frame) in Yangbi county suffer minor damage, which agrees with field investigation results.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"44 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconnaissance of the 2022 Guanshan and Chihshang earthquakes in eastern Taiwan","authors":"Che‐Min Lin, Yu-Wen Chang, Chung‐Che Chou, S. Jhuang, Zheng-kuan Lee, Chiun-Lin Wu, S. Chao, Jyun‐Yan Huang, Hsuan-Chih Yang, Che-Yu Chang, Gilberto Mosqueda, Chung-Chan Hung","doi":"10.1177/87552930231209102","DOIUrl":"https://doi.org/10.1177/87552930231209102","url":null,"abstract":"Two significant earthquakes struck eastern Taiwan on consecutive days in mid-September of 2022. The first, the Guanshan earthquake, occurred on the night of September 17 (local time) with a local magnitude (ML) of 6.4, and the second, the Chihshang earthquake, occurred on the afternoon of September 18 with a mainshock of ML of 6.8. The strong motion of these two events resulted in a series of ground surface ruptures, 2 collapsed buildings, two collapsed bridges, and more than 100 partially damaged structures along the Chihshang and Yuli faults around the Longitudinal Valley in eastern Taiwan. The observed response spectra at the damage sites of the Chihshang earthquake were significantly larger than the design response spectra of the 1997 Taiwan building code. Near-fault velocity pulses with a maximum value of 132 cm/s were observed along the faults, destructively impacting the damaged structures. The details and causes of the structural damage are presented in this article according to the findings of the on-site reconnaissance and ground motion analysis. Finally, the behavior of selected structures that have a structural health monitoring system at the time of these two destructive earthquakes is also evaluated.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"42 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Boyd, David Churchwell, M. Moschetti, Eric M. Thompson, Martin C Chapman, Okan Ilhan, Thomas L Pratt, Sean K. Ahdi, S. Rezaeian
{"title":"Sediment thickness map of United States Atlantic and Gulf Coastal Plain Strata, and their influence on earthquake ground motions","authors":"O. Boyd, David Churchwell, M. Moschetti, Eric M. Thompson, Martin C Chapman, Okan Ilhan, Thomas L Pratt, Sean K. Ahdi, S. Rezaeian","doi":"10.1177/87552930231204880","DOIUrl":"https://doi.org/10.1177/87552930231204880","url":null,"abstract":"With the recent successful accounting of basin depth ground-motion adjustments in seismic hazard analyses for select areas of the western United States, we move toward implementing similar adjustments in the Atlantic and Gulf Coastal Plains by constructing a sediment thickness model and evaluating multiple relevant site amplification models for central and eastern United States seismic hazard analyses. We digitize and combine existing sediment thickness data sets into a composite surface that delineates the base of Cretaceous sediments under the Atlantic Coastal Plain and the base of Mesozoic sediments under the Gulf Coastal Plain. Amplification models dependent on sediment thickness, site natural period, and source-to-site path length are compared with data sets of observed ground motions to evaluate the ability of the new models to improve ground motion estimates. We find that the amplification models can account for observed trends in sediment-thickness and period-dependent residuals, but some tuning is required. For example, the model of Chapman and Guo requires a reference VS30, the time-averaged shear-wave velocity within 30 m of the Earth’s surface, for non-Coastal Plain sites, which we estimate to be between about 1 and 2 km/s. Along with our sediment thickness model, we estimate a velocity profile for application to the Harmon et al. site-natural-period-based model in order to best match the Chapman and Guo period dependence for a broad range of sediment thicknesses. The Next Generation of Attenuation models for the eastern United States Gulf Coast path-based adjustment models can also account for seismic attenuation in the Coastal Plain sediments and reduce the standard deviation of total residuals. If enacted in the U.S. Geological Survey National Seismic Hazard Model, these amplification models will reduce predicted short-period (<1 s) and increase predicted long-period (>1 s) ground motions in the Coastal Plains appreciably.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate Thomas, Christopher Milliner, Rui Chen, Brian Chiou, Timothy Dawson, Mark D. Petersen
{"title":"Least cost path analysis as an objective and automatic method to define the main fault trace for probabilistic fault displacement hazard analyses","authors":"Kate Thomas, Christopher Milliner, Rui Chen, Brian Chiou, Timothy Dawson, Mark D. Petersen","doi":"10.1177/87552930231205878","DOIUrl":"https://doi.org/10.1177/87552930231205878","url":null,"abstract":"A main goal of probabilistic fault displacement hazard analysis (PFDHA) is to quantify displacement along and across an identified active fault that poses a hazard to nearby infrastructure such as roads, bridges, pipelines, and telecommunications. PFDHA relies on empirical models developed using data sets of displacement measurements and mapped surface rupture traces compiled from past global surface rupturing earthquakes by field surveys or remote sensing. However, current approaches to determine the location of the main rupture trace are subjective and lack repeatability due to different geological interpretations of the often complex network of mapped rupture traces. This subjectivity makes it difficult to compile and analyze displacement measurements and ruptures from multiple events in a consistent manner. This study provides an objective and repeatable approach to define a main rupture trace that can be applied to either field or remote sensing data. The new approach defined here can be used in developing rupture trace connectivity and geometry for use in displacement model developments and for use in objectively defining the input fault trace for assessing fault displacement hazard.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"64 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Earthquake response of reinforced concrete frames with infill and active external confinement: Tests and dataset","authors":"Charles Kerby, Jonathan Monical, Santiago Pujol","doi":"10.1177/87552930231204878","DOIUrl":"https://doi.org/10.1177/87552930231204878","url":null,"abstract":"One option to retrofit reinforced concrete (RC) frames is the construction of infill walls. Infill increases lateral strength and stiffness but tends to reduce drift capacity relative to bare frames. Few studies have quantified the reductions in drift demand attributable to infills prior to failure. This report summarizes data from experiments designed to compare drift demands of frames with and without infill. Included data come from two experimental programs completed at Purdue University which focused on the in-plane dynamic response of reduced-scale, non-ductile RC frames to uniaxial simulated earthquake ground motions. 254 dynamic tests were conducted on bare frames, frames with masonry infill walls, and frames with timber infill walls. In 11 of 14 test series, active confinement was applied to columns using external post-tensioned reinforcement. The complete dataset is open-access online on Zenodo, DOI: 10.5281/zenodo.6954967.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"77 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}