Sediment thickness map of United States Atlantic and Gulf Coastal Plain Strata, and their influence on earthquake ground motions

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL
O. Boyd, David Churchwell, M. Moschetti, Eric M. Thompson, Martin C Chapman, Okan Ilhan, Thomas L Pratt, Sean K. Ahdi, S. Rezaeian
{"title":"Sediment thickness map of United States Atlantic and Gulf Coastal Plain Strata, and their influence on earthquake ground motions","authors":"O. Boyd, David Churchwell, M. Moschetti, Eric M. Thompson, Martin C Chapman, Okan Ilhan, Thomas L Pratt, Sean K. Ahdi, S. Rezaeian","doi":"10.1177/87552930231204880","DOIUrl":null,"url":null,"abstract":"With the recent successful accounting of basin depth ground-motion adjustments in seismic hazard analyses for select areas of the western United States, we move toward implementing similar adjustments in the Atlantic and Gulf Coastal Plains by constructing a sediment thickness model and evaluating multiple relevant site amplification models for central and eastern United States seismic hazard analyses. We digitize and combine existing sediment thickness data sets into a composite surface that delineates the base of Cretaceous sediments under the Atlantic Coastal Plain and the base of Mesozoic sediments under the Gulf Coastal Plain. Amplification models dependent on sediment thickness, site natural period, and source-to-site path length are compared with data sets of observed ground motions to evaluate the ability of the new models to improve ground motion estimates. We find that the amplification models can account for observed trends in sediment-thickness and period-dependent residuals, but some tuning is required. For example, the model of Chapman and Guo requires a reference VS30, the time-averaged shear-wave velocity within 30 m of the Earth’s surface, for non-Coastal Plain sites, which we estimate to be between about 1 and 2 km/s. Along with our sediment thickness model, we estimate a velocity profile for application to the Harmon et al. site-natural-period-based model in order to best match the Chapman and Guo period dependence for a broad range of sediment thicknesses. The Next Generation of Attenuation models for the eastern United States Gulf Coast path-based adjustment models can also account for seismic attenuation in the Coastal Plain sediments and reduce the standard deviation of total residuals. If enacted in the U.S. Geological Survey National Seismic Hazard Model, these amplification models will reduce predicted short-period (<1 s) and increase predicted long-period (>1 s) ground motions in the Coastal Plains appreciably.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930231204880","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent successful accounting of basin depth ground-motion adjustments in seismic hazard analyses for select areas of the western United States, we move toward implementing similar adjustments in the Atlantic and Gulf Coastal Plains by constructing a sediment thickness model and evaluating multiple relevant site amplification models for central and eastern United States seismic hazard analyses. We digitize and combine existing sediment thickness data sets into a composite surface that delineates the base of Cretaceous sediments under the Atlantic Coastal Plain and the base of Mesozoic sediments under the Gulf Coastal Plain. Amplification models dependent on sediment thickness, site natural period, and source-to-site path length are compared with data sets of observed ground motions to evaluate the ability of the new models to improve ground motion estimates. We find that the amplification models can account for observed trends in sediment-thickness and period-dependent residuals, but some tuning is required. For example, the model of Chapman and Guo requires a reference VS30, the time-averaged shear-wave velocity within 30 m of the Earth’s surface, for non-Coastal Plain sites, which we estimate to be between about 1 and 2 km/s. Along with our sediment thickness model, we estimate a velocity profile for application to the Harmon et al. site-natural-period-based model in order to best match the Chapman and Guo period dependence for a broad range of sediment thicknesses. The Next Generation of Attenuation models for the eastern United States Gulf Coast path-based adjustment models can also account for seismic attenuation in the Coastal Plain sediments and reduce the standard deviation of total residuals. If enacted in the U.S. Geological Survey National Seismic Hazard Model, these amplification models will reduce predicted short-period (<1 s) and increase predicted long-period (>1 s) ground motions in the Coastal Plains appreciably.
美国大西洋和海湾沿海平原地层沉积厚度图及其对地震地面运动的影响
最近,我们在美国西部部分地区的地震危险分析中成功地考虑了盆地深度地动调整,通过构建沉积厚度模型和评估美国中部和东部地震危险分析的多个相关场地放大模型,我们将在大西洋和海湾沿海平原实施类似的调整。我们对现有的沉积厚度数据集进行数字化处理,并将其合并为一个复合面,该复合面划定了大西洋沿海平原下白垩纪沉积物的基底和海湾沿海平原下中生代沉积物的基底。将取决于沉积厚度、站点自然周期和源到站点路径长度的放大模型与观测到的地动数据集进行比较,以评估新模型改进地动估计的能力。我们发现,放大模型可以解释沉积厚度和周期相关残差的观测趋势,但需要进行一些调整。例如,Chapman 和 Guo 的模型需要一个 VS30 参考值,即地球表面 30 米范围内的时间平均剪切波速度,对于非沿海平原站点,我们估计该参考值约为 1 至 2 千米/秒。在建立沉积厚度模型的同时,我们还估算了一个速度曲线,以应用于 Harmon 等人基于场地-自然周期的模型,从而在广泛的沉积厚度范围内最好地匹配 Chapman 和 Guo 的周期依赖性。美国东部海湾沿岸基于路径的下一代衰减模型调整模型也可以考虑沿海平原沉积物的地震衰减,并降低总残差的标准偏差。如果在美国地质调查局国家地震灾害模型中应用,这些放大模型将显著降低沿海平原的短周期(1 秒)地面运动预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信