Discrete Mathematics and Applications最新文献

筛选
英文 中文
On a class of irregular languages 关于一类不规则语言
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-12-01 DOI: 10.1515/dma-2022-0031
Kirill I. Groshev
{"title":"On a class of irregular languages","authors":"Kirill I. Groshev","doi":"10.1515/dma-2022-0031","DOIUrl":"https://doi.org/10.1515/dma-2022-0031","url":null,"abstract":"Abstract We present a class of irregular languages defined by means of the change of number systems.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"379 - 382"},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42106751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some cardinality estimates for the set of correlation-immune Boolean functions 一组相关免疫布尔函数的基数估计
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-12-01 DOI: 10.1515/dma-2022-0032
E. Karelina
{"title":"Some cardinality estimates for the set of correlation-immune Boolean functions","authors":"E. Karelina","doi":"10.1515/dma-2022-0032","DOIUrl":"https://doi.org/10.1515/dma-2022-0032","url":null,"abstract":"Abstract Estimates for the cardinality of the set of correlation-immune n-ary Boolean functions with fixed weight are obtained.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"383 - 388"},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43018702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants 具有子体几何分布的随机环境中分支过程低偏差的渐近局部概率
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0026
Konstantin Yu. Denisov
{"title":"Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants","authors":"Konstantin Yu. Denisov","doi":"10.1515/dma-2022-0026","DOIUrl":"https://doi.org/10.1515/dma-2022-0026","url":null,"abstract":"Abstract We consider local probabilities of lower deviations for branching process Zn=Xn,1+⋯+Xn,Zn−1 ${{Z}_{n}}={{X}_{n,1}}+cdots +{{X}_{n,{{Z}_{n-1}}}}$in random environment η. We assume that η is a sequence of independent identically distributed random variables and for fixed environment η the distributions of variables Xi,j are geometric ones.We suppose that the associated random walk Sn=ξ1+⋯+ξn ${{S}_{n}}={{xi }_{1}}+cdots +{{xi }_{n}}$has positive mean μ and satisfies left-hand Cramer’s condition Eexp(hξi)<∞ if h−<h<0 $mathbf{E}exp left( h{{xi }_{i}} right)<infty text{ if }{{h}^{-}}<h<0$for some h−<−1. ${{h}^{-}}<-1.$Under these assumptions, we find the asymptotic representation of local probabilities P(Zn=⌊ exp(θn) ⌋) for θ∈[ θ1,θ2 ]⊂(μ−;μ) $mathbf{P}left( {{Z}_{n}}=leftlfloor exp (theta n) rightrfloor right)text{ for }theta in left[ {{theta }_{1}},{{theta }_{2}} right]subset left( {{mu }^{-}};mu right)$for some non-negative μ−.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"313 - 323"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46693708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimates of lengths of shortest nonzero vectors in some lattices, II 某些格中最短非零向量长度的估计,Ⅱ
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0028
A. S. Rybakov
{"title":"Estimates of lengths of shortest nonzero vectors in some lattices, II","authors":"A. S. Rybakov","doi":"10.1515/dma-2022-0028","DOIUrl":"https://doi.org/10.1515/dma-2022-0028","url":null,"abstract":"Abstract In 1988, Friese et al. put forward lower estimates for the lengths of shortest nonzero vectors for “almost all” lattices of some families in the dimension 3. In 2004, the author of the present paper obtained a similar result for the dimension 4. Here by means of results obtained in part of the paper we show that these estimates also hold in the dimension 5.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"341 - 358"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46127729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes Reed-Muller码的一维子码的Hadamard产品分类
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0025
I. Chizhov, M. Borodin
{"title":"Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes","authors":"I. Chizhov, M. Borodin","doi":"10.1515/dma-2022-0025","DOIUrl":"https://doi.org/10.1515/dma-2022-0025","url":null,"abstract":"Abstract For Reed–Muller codes we consider subcodes of codimension 1. A classification of Hadamard products of such subcodes is obtained. With the use of this classification it has been shown that in most cases the problem of recovery of the secret key of a code-based cryptosystem employing such subcodes is equivalent to the problem of recovery of the secret key of the same cryptosystem based on Reed–Muller codes, which is known to be tractable.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"297 - 311"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46591335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of proper families of Boolean functions 布尔函数的适当族的性质
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0030
K. Tsaregorodtsev
{"title":"Properties of proper families of Boolean functions","authors":"K. Tsaregorodtsev","doi":"10.1515/dma-2022-0030","DOIUrl":"https://doi.org/10.1515/dma-2022-0030","url":null,"abstract":"Abstract We show that triangular families of Boolean functions comprise an exponentially small fraction of proper families of a given order. We prove that if F is a proper family of Boolean functions, then the number of solutions of an equation F(x) = A is even. Finally, we describe a new class of proper families of Boolean functions.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"369 - 378"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44855576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the “tree” structure of natural numbers 关于自然数的“树”结构
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0027
V. Iudelevich
{"title":"On the “tree” structure of natural numbers","authors":"V. Iudelevich","doi":"10.1515/dma-2022-0027","DOIUrl":"https://doi.org/10.1515/dma-2022-0027","url":null,"abstract":"Abstract With each positive integer one can naturally associate a graph in the form of a tree. This paper is concerned with the average values of the number of edges, the number of leaves and the height of trees corresponding to positive integers not greater than a given boundary.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"325 - 340"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48583510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Curvature of the Boolean majority function 布尔多数函数的曲率
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-10-01 DOI: 10.1515/dma-2022-0029
Aleksandr S. Tissin
{"title":"Curvature of the Boolean majority function","authors":"Aleksandr S. Tissin","doi":"10.1515/dma-2022-0029","DOIUrl":"https://doi.org/10.1515/dma-2022-0029","url":null,"abstract":"Abstract The Boolean majority function and the generalized Boolean majority function of an even number n of variables are considered. For these functions exact values of the Walsh coefficients and the curvature are calculated.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"359 - 367"},"PeriodicalIF":0.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45802349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulas for the numbers of sequences containing a given pattern given number of times 包含给定模式的序列数的公式给定次数
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-08-01 DOI: 10.1515/dma-2022-0020
A. A. Serov
{"title":"Formulas for the numbers of sequences containing a given pattern given number of times","authors":"A. A. Serov","doi":"10.1515/dma-2022-0020","DOIUrl":"https://doi.org/10.1515/dma-2022-0020","url":null,"abstract":"Abstract Explicit recurrent formulas for the numbers of sequences containing a given pattern given number of times are constructed. These formulas depend on the length of the sequence, the length of the pattern and its period only. By means of these results one may find the distribution of statistics of the NIST overlapping matching test for binary sequences and arbitrary pattern parameters.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"233 - 245"},"PeriodicalIF":0.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42907915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Computation of distributions of statistics by means of Markov chains 用马尔可夫链计算统计分布
IF 0.5
Discrete Mathematics and Applications Pub Date : 2022-08-01 DOI: 10.1515/dma-2022-0024
A. M. Zubkov, M. Filina
{"title":"Computation of distributions of statistics by means of Markov chains","authors":"A. M. Zubkov, M. Filina","doi":"10.1515/dma-2022-0024","DOIUrl":"https://doi.org/10.1515/dma-2022-0024","url":null,"abstract":"Abstract An approach to the construction of efficient algorithms for the exact computation of distributions of statistics by means of the Markov chains is described. The Pearson statistic, the number of empty cells for random allocations of particles, and the Kolmogorov – Smirnov statistic are considered as examples. Possibilities of extending the approach are discussed, in particular to the computation of the joint distributions of statistics.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"285 - 295"},"PeriodicalIF":0.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41514133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信