具有子体几何分布的随机环境中分支过程低偏差的渐近局部概率

IF 0.3 Q4 MATHEMATICS, APPLIED
Konstantin Yu. Denisov
{"title":"具有子体几何分布的随机环境中分支过程低偏差的渐近局部概率","authors":"Konstantin Yu. Denisov","doi":"10.1515/dma-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract We consider local probabilities of lower deviations for branching process Zn=Xn,1+⋯+Xn,Zn−1 ${{Z}_{n}}={{X}_{n,1}}+\\cdots +{{X}_{n,{{Z}_{n-1}}}}$in random environment η. We assume that η is a sequence of independent identically distributed random variables and for fixed environment η the distributions of variables Xi,j are geometric ones.We suppose that the associated random walk Sn=ξ1+⋯+ξn ${{S}_{n}}={{\\xi }_{1}}+\\cdots +{{\\xi }_{n}}$has positive mean μ and satisfies left-hand Cramer’s condition Eexp(hξi)<∞ if h−<h<0 $\\mathbf{E}\\exp \\left( h{{\\xi }_{i}} \\right)<\\infty \\text{ if }{{h}^{-}}<h<0$for some h−<−1. ${{h}^{-}}<-1.$Under these assumptions, we find the asymptotic representation of local probabilities P(Zn=⌊ exp(θn) ⌋) for θ∈[ θ1,θ2 ]⊂(μ−;μ) $\\mathbf{P}\\left( {{Z}_{n}}=\\left\\lfloor \\exp (\\theta n) \\right\\rfloor \\right)\\text{ for }\\theta \\in \\left[ {{\\theta }_{1}},{{\\theta }_{2}} \\right]\\subset \\left( {{\\mu }^{-}};\\mu \\right)$for some non-negative μ−.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants\",\"authors\":\"Konstantin Yu. Denisov\",\"doi\":\"10.1515/dma-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider local probabilities of lower deviations for branching process Zn=Xn,1+⋯+Xn,Zn−1 ${{Z}_{n}}={{X}_{n,1}}+\\\\cdots +{{X}_{n,{{Z}_{n-1}}}}$in random environment η. We assume that η is a sequence of independent identically distributed random variables and for fixed environment η the distributions of variables Xi,j are geometric ones.We suppose that the associated random walk Sn=ξ1+⋯+ξn ${{S}_{n}}={{\\\\xi }_{1}}+\\\\cdots +{{\\\\xi }_{n}}$has positive mean μ and satisfies left-hand Cramer’s condition Eexp(hξi)<∞ if h−<h<0 $\\\\mathbf{E}\\\\exp \\\\left( h{{\\\\xi }_{i}} \\\\right)<\\\\infty \\\\text{ if }{{h}^{-}}<h<0$for some h−<−1. ${{h}^{-}}<-1.$Under these assumptions, we find the asymptotic representation of local probabilities P(Zn=⌊ exp(θn) ⌋) for θ∈[ θ1,θ2 ]⊂(μ−;μ) $\\\\mathbf{P}\\\\left( {{Z}_{n}}=\\\\left\\\\lfloor \\\\exp (\\\\theta n) \\\\right\\\\rfloor \\\\right)\\\\text{ for }\\\\theta \\\\in \\\\left[ {{\\\\theta }_{1}},{{\\\\theta }_{2}} \\\\right]\\\\subset \\\\left( {{\\\\mu }^{-}};\\\\mu \\\\right)$for some non-negative μ−.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑随机环境η中分支过程Zn=Xn,1+⋯+Xn,Zn−1 ${{Z}_{n}}={{X}_{n,1}}+\cdots +{{X}_{n,{{Z}_{n-1}}}}$的低偏差局部概率。我们假设相关随机漫步Sn=ξ1+⋯+ξn ${{S}_{n}}={{\xi }_{1}}+\cdots +{{\xi }_{n}}$具有正均值μ,并且对于某些h−<−1,满足左手克莱默条件exp(hξi)<∞,如果h−本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
Abstract We consider local probabilities of lower deviations for branching process Zn=Xn,1+⋯+Xn,Zn−1 ${{Z}_{n}}={{X}_{n,1}}+\cdots +{{X}_{n,{{Z}_{n-1}}}}$in random environment η. We assume that η is a sequence of independent identically distributed random variables and for fixed environment η the distributions of variables Xi,j are geometric ones.We suppose that the associated random walk Sn=ξ1+⋯+ξn ${{S}_{n}}={{\xi }_{1}}+\cdots +{{\xi }_{n}}$has positive mean μ and satisfies left-hand Cramer’s condition Eexp(hξi)<∞ if h−
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信