S. Kato, K. Naito, K. Nawashiro, Y. Kawakita, M. Hakoda
{"title":"High power pulsed streamer corona reactor using a coaxial discharge tube for gas treatment applications","authors":"S. Kato, K. Naito, K. Nawashiro, Y. Kawakita, M. Hakoda","doi":"10.1109/PPC.1995.599775","DOIUrl":"https://doi.org/10.1109/PPC.1995.599775","url":null,"abstract":"We report on our investigations of a pulsed high power streamer corona reader using a simple coaxial discharge tube for industrial gas treatment processes, such as ozone generation and flue gas cleanup. For industrial usages of these processes, higher discharge power density is favorable to achieve higher productivity. As a first step of research aiming at the higher discharge power density, we examined experimentally characteristics of the repetitive pulsed streamer corona discharge using dry air as feed gas. As a result, the dependency that the discharge current decreases with repetition rate and increases with gas flow rate has been found. The maximum discharge power density of about 100 W/l (/spl sim/25 kV, /spl sim/75 A, /spl sim/100 ns, 170 pps, 0.3l) was obtained in this experiment. The gas temperature rise at this condition was about 20/spl sim/25 %. Because it is not so high as to affect gas treatment badly, it will be possible to operate at still higher discharge power density. We also measured generated ozone in this experiment and the lowest ozone energy cost obtained was 9/spl sim/10 Wh/gO/sub 3/, which was lower than that of a commercial silent discharge type ozonizer.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85647945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Kirkcudbright EML facility pulsed power system as a driver for electrothermal guns","authors":"J. Hammon, S. Gilbert, G. Savell","doi":"10.1109/PPC.1995.596474","DOIUrl":"https://doi.org/10.1109/PPC.1995.596474","url":null,"abstract":"The Defence Research Agency, with support from Physics International, has performed a detailed study of the use of the pulsed power system at the Kirkcudbright Electromagnetic Launch Facility as a driver for electrothermal guns. The study addressed the performance of the bank, as is, driving representative ET loads, evaluated possible modifications of the bank to improve its performance into certain loads, and estimated the implications (cost, schedule, and effect on operation into EM loads) of such modifications. This paper describes the performance of the bank in its present configuration and discusses the types of loads for which performance is limited, as is. Loads for which modifications may be desired are then described. Possible modifications are presented and predicted performance with the modifications in place is reviewed.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81436745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using a high-current electron beam to generate ozone","authors":"Y. Kotov, S. Sokovnin, A. Filatov","doi":"10.1109/PPC.1995.599785","DOIUrl":"https://doi.org/10.1109/PPC.1995.599785","url":null,"abstract":"Calculations and experiments have shown that the repetitive high-current electron beam (HCEB) generation of ozone from the air is an order of magnitude more favorable energetically than producing ozone by a persistent electron beam. But it is less advantageous than the production of ozone by the electric-discharge method (w/sub sp//spl sim/13 kw h/kg), if one takes into account the efficiency of converting energy into a beam (about 50%). However, specific power intakes fall as the electron energy rises because of an increase in the free path length of electrons in the air. Calculations for RUSLAN (E=700 keV, I=5000 A, t=50 ns), and SIBERIA (E=1000 keV, I=5000 A, t=50 ns) accelerators provide evidence that these machines are becoming competitive in power intake with electric-discharge accelerators. Virtues of the ozone production process involving the use of a repetitive accelerator include the simplicity in design, low cost, and reliability of the air oxygen-to-ozone-conversion unit.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84642266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Goforth, B. Anderson, D. Bartram, C. Findley, O. Garcia, G. J. Heltne, D. Herrera, T. Herrera, J. King, I. Lindemuth, E. Lopez, S. Marsh, E. C. Martinez, M. Thompson, H. Oona, J. Stokes, D. Torres, L. Veeser, M. Yapuncich, W. D. Zerwekh
{"title":"Explosively formed fuse opening switches for multi-megajoule applications","authors":"J. Goforth, B. Anderson, D. Bartram, C. Findley, O. Garcia, G. J. Heltne, D. Herrera, T. Herrera, J. King, I. Lindemuth, E. Lopez, S. Marsh, E. C. Martinez, M. Thompson, H. Oona, J. Stokes, D. Torres, L. Veeser, M. Yapuncich, W. D. Zerwekh","doi":"10.1109/PPC.1995.596500","DOIUrl":"https://doi.org/10.1109/PPC.1995.596500","url":null,"abstract":"High explosive pulsed power (HEPP) systems are capable of generating very high energies in magnetic fields. Such stored energy is usually developed on time scales of a few tens or hundreds of microseconds. Many applications require shorter pulses and opening switches provide one way to use the large energy available for faster applications. With current flowing in an inductive circuit, introducing resistance produces voltage that can be used to drive current into a load. For an opening switch with a fast rising resistance, the load current rise time is determined by the R/L time constant of the circuit. A significant fraction of the circuit energy must be dissipated in the process, and in applications where very large energies must be dealt with only a few types of switches can be used. Experiments with high explosive driven opening switches have produced a few switches that can carry tens of MA current, and open on the time scale of one or a few /spl mu/s. We have specialized in a type of switch that we call an explosively formed fuse (EFF), and the use of this switch in the is MJ Procyon system is the subject of this paper. Operation of the EFF switch at levels of /spl sim/3 TW for 2 /spl mu/s has become routine, and we describe its characteristics and give data from a number of tests.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84332835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Oona, D. Peterson, J. Goforth, M. Yapuncich, C. Findley, E. Lopez, J. Benage, G. Idzorek, J. Cochrane, B. Anderson, J. Shlachter
{"title":"Instabilities in foil implosions and the effect on radiation output","authors":"H. Oona, D. Peterson, J. Goforth, M. Yapuncich, C. Findley, E. Lopez, J. Benage, G. Idzorek, J. Cochrane, B. Anderson, J. Shlachter","doi":"10.1109/PPC.1995.599741","DOIUrl":"https://doi.org/10.1109/PPC.1995.599741","url":null,"abstract":"One of the aims of the Athena program at the Los Alamos National Laboratory is the generation of a high fluence of soft X-rays from the thermalization of a radially imploding foil. In experiments in the Athena program, a large axial current is passed through a cylindrical aluminum foil. Under the action of the Lorentz force, the resulting plasma accelerates toward the axis, thermalizes, and produces a fast soft X-ray pulse with a blackbody temperature up to several hundred electron volts. We present visible light images and X-ray data designed to study the effects of foil mass, current, and initial perturbations on the instability growth during foil implosion. Representative data is presented from several experiments using the Pegasus capacitor bank system and the explosively driven Procyon system. These experiments are labeled Peg 25 and Peg 33 for the Pegasus experiments and PDD1, PDD2 and PRFO for the Procyon experiments. In these experiments, all foils had radii of 5 cm but varied in mass and initial conditions. Experimental data from several shots were compared with each other and to a radiation magnetohydrodynamic (RMHD) computation. The data obtained from these experiments and the analysis has given us understanding of the physical mechanisms involved and insight for future experiments and has lead us to propose methods for minimizing the instability growth and maximizing the radiation output. In particular, we observed that wrinkles and other physical anomalies in the initial shape of foil do not appear to contribute to the growth of the instabilities.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88084465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Litton, A. Erickson, P. Bond, A. Kardo-Susoyev, B. O’Meara
{"title":"Low impedance nanosecond and sub-nanosecond risetime pulse generators for electro-optical switch applications","authors":"A. Litton, A. Erickson, P. Bond, A. Kardo-Susoyev, B. O’Meara","doi":"10.1109/PPC.1995.596808","DOIUrl":"https://doi.org/10.1109/PPC.1995.596808","url":null,"abstract":"There is a growing demand in the laser industry for fast risetime, high repetition rate electro-optical switches. The focus of Fast Transitions, Inc. and its partners Megapulse and Moose Hill Enterprises has been to address the unique needs of the E-O switch driver market. The capabilities of the devices and systems described here also extend into other areas such as streak camera drivers, pulsed laser diode drivers, spark gap triggers, microwave tube drivers and many others. The driver systems now being produced are unprecedented in their capabilities in terms of performance, size, cost, life, reliability and efficiency. These drivers are based on a Russian developed solid state device known as the DSRD (drift step recovery diode). This device allows the generation of low output impedance, short, high voltage pulses with very simple circuits. Most simply stated, the DSRD operates as a high voltage opening switch. The driving circuits utilize inductive energy storage at relatively low input voltages and the DSRD allows the transfer of energy from the storage inductance to the load. Its fast switching time and low junction capacitance allow the rise time to be largely determined by the characteristics of the storage inductance and output circuit.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88331343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. J. Summa, R. Gullickson, M. Hebert, J. E. Rowley, J. F. Léon, I. Vitkovitsky
{"title":"Advances in X-ray simulator technology","authors":"W. J. Summa, R. Gullickson, M. Hebert, J. E. Rowley, J. F. Léon, I. Vitkovitsky","doi":"10.1109/PPC.1995.596447","DOIUrl":"https://doi.org/10.1109/PPC.1995.596447","url":null,"abstract":"DNA's future X-ray simulators are based upon inductive energy storage, a technology which offers the promise of more compact and affordable energy storage and delivery for larger systems. DECADE is a prime example of this technology. DECADE will store approximately 10 megajoules and deliver about 2 megajoules to separate bremsstrahlung sources or to a combined plasma radiation source load. Two DECADE prototype modules have already operated, demonstrating that key parameters can be met. The concept of inductive energy storage is illustrated. An opening switch is placed in parallel with the load. Energy is delivered to the load when the switch rapidly increases its resistance (i.e., opens). The most commonly used form is the plasma opening switch (POS) which opens as plasma charge carriers are depleted or move out of the conduction region under the influence of J/spl times/B forces. The scaling of the voltage produced across the switch is also illustrated. It is proportional to the current and inversely proportional to the opening time. Switch performance has been demonstrated with short opening times and lower switch voltages. The state of switch technology is also indicated. The risk of switch performance would be lower for soft X-ray simulators if plasma radiation source loads can operate with longer implosion times.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85827602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new look at the energy efficiency of a series magnetic pulse compressor with resistive losses","authors":"N. Georgescu","doi":"10.1109/PPC.1995.599808","DOIUrl":"https://doi.org/10.1109/PPC.1995.599808","url":null,"abstract":"In high repetition rate magnetic pulse compressors, even small increases of energy efficiency are very important. In this paper, the energy efficiency in a magnetic pulse compression loop is defined as the ratio between the accumulated energy in the final capacitor (C2) and the initial energy in the first capacitor (C1). The maximization of the energy efficiency does not correspond to the total discharge of the first capacitor, such as others authors have stated. An expression for the energy efficiency (/spl epsi/), as a function of k=C1/C2, is demonstrated. The graphical representations show that the /spl epsi/ maximization is obtained for k>1, such that a progressively decrease of the capacitors in the compression chain is needed. The energy efficiency is in this case with up to 20% greater than that of the other theory. Another very important advantage of the authors' theory is demonstrated: the voltage level, remains practically unchanged all along the series magnetic pulse compression circuit.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82150954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Swanekamp, J. Grossmann, D. Hinshelwood, S.J. Stephanakis, J. R. Boller, R. Commisso
{"title":"Experimental and theoretical investigations of 2-D vacuum power flow","authors":"S. Swanekamp, J. Grossmann, D. Hinshelwood, S.J. Stephanakis, J. R. Boller, R. Commisso","doi":"10.1109/PPC.1995.599744","DOIUrl":"https://doi.org/10.1109/PPC.1995.599744","url":null,"abstract":"Simulations of vacuum electron flow in a coaxial transmission line with and without ion emission are compared with each other and with experimental data from Gamble II. The simulation without ions shows large current losses just downstream of an impedance discontinuity. Simulations with ions show that the vacuum electron current past the impedance discontinuity is increased by the presence of ions. The losses are much more distributed than in the simulation without ions. The experimental data shows a more distributed current loss that is similar to the case where ion emission is allowed. This suggests that ions may be present and playing a role in the experiment.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79711195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H.R. Stewardson, S. Miran, I. R. Smith, B. Novac, V.V. Vadher
{"title":"Fuse conditioning of the output of a capacitor bank to drive a PEOS","authors":"H.R. Stewardson, S. Miran, I. R. Smith, B. Novac, V.V. Vadher","doi":"10.1109/PPC.1995.599763","DOIUrl":"https://doi.org/10.1109/PPC.1995.599763","url":null,"abstract":"The paper details power capacitor bank experiments performed to assess the performance of a pulsed power plasma erosion opening switch (PEOS). A description is given of the PEOS, which was of an inexpensive and expendable design, and was intended for use as the final stage of a flux compressor output conditioning circuit. Techniques using automatically operating exploding foils, as both opening and closing switches, condition the 9 /spl mu/s quarter-wave output pulse from the capacitor bank to a 400 ns pulse to the PEOS. An outline is given of the computer modelling and the experimental procedures used to establish the optimum operating conditions, and results are presented which illustrate the behaviour of the PEOS.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81388553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}