{"title":"Fracture Diagnostic Using Distributed Temperature Measurements During Stimulation Fluid Flow-Back","authors":"Y. Mao, M. Zeidouni, C. Godefroy, M. Gysen","doi":"10.2118/195221-MS","DOIUrl":"https://doi.org/10.2118/195221-MS","url":null,"abstract":"\u0000 The significant temperature difference between the fractured and non-fractured regions during the stimulation fluid flow-back period can be very useful for fracture diagnosis. The recent developments in downhole temperature monitoring systems open new possibilities to detect these temperature variations to perform production logging analyses. In this work, we derive a novel analytical solution to model the temperature signal associated with the shut-in during flow-back and production periods. The temperature behavior can infer the efficiency of each fracture. To obtain the analytical solution from an existing wellbore fluid energy balance equation, we use the Method of Characteristics with the input of a relevant thermal boundary condition. The temperature modeling results acquired from this analytical solution are validated against those from a finite element model for multiple cases.\u0000 Compared to the warm-back effect in the non-fractured region after shut-in, a less significant heating effect is observed in the fractured region because of the warmer fluid away from the perforation moving into the fracture (after-flow). Detailed parametric analyses are conducted on after-flow velocity and its variation, flowing, geothermal, and inflow temperature of each fracture, surrounding temperature field, and casing radius to investigate their impacts on the wellbore fluid temperature modeling results.\u0000 The inversion procedures characterize each fracture considering the exponential distribution of temperature based on the analytical solutions in fractured and non-fractured regions. Inflow fluid temperature, surrounding temperature field, and after-flow velocity of each fracture can be estimated from the measured temperature data, which present decent accuracies analyzing synthetic temperature signal. The outputs of this work can contribute to production logging, warm-back, and wellbore storage analyses to achieve successful fracture diagnostic.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"31 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81442933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajay Kumar, Y. Ibrahim, Badrelddin Atta, Vijendra Singh, Omer Musa Elmubarak, C. A. A. Razak, Bamdeo Tripathi, V. Vidyasagar
{"title":"A Case Study on Treating Oil Contaminants and Heavy Metal of Produced Water Through Phytoremediation Using Reed Bed Technology: A Success Story of 15 Years Operation of Heglig Oil Field of Sudan","authors":"Ajay Kumar, Y. Ibrahim, Badrelddin Atta, Vijendra Singh, Omer Musa Elmubarak, C. A. A. Razak, Bamdeo Tripathi, V. Vidyasagar","doi":"10.2118/194575-MS","DOIUrl":"https://doi.org/10.2118/194575-MS","url":null,"abstract":"\u0000 Produced water is an inextricable part of the hydrocarbon recovery processes. Safe and environmentally benign disposal of produced water is a major concern for all the oil fields across the world in the present low cost and stringent environmental & statutory compliance era. Many technology available in the market to treat produced water oil contaminants but economical treatment of heavy metal content is still a great challenges for oil industries for safe disposal.\u0000 Therefore, New innovative technology i.e. Reed bed technology has been adopted in Heglig field of Sudan to treat the produced water and heavy metal economically through phytoremediation. After successful implementation in Heglig oil field, it is being implemented in other surrounding oil field also.\u0000 It is probably a world largest Phytoremediation/Bio-remediation system using Reed Bed technology operating successfully for last 15 years. It is environmental friendly, solar energy driven clean up techniques. This paper not only elucidate, how reed bed removes oil contaminants and heavy metals but also provide clear picture of how this project provide shelter for flora, fauna, other species that help to maintain ecological and environmental balance. Research has also demonstrated that reed-bed technology is feasible and resilient in treating oil produced water","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74231838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Thapliyal, Sudeb Kundu, Suparna Chowdhury, Harjinder Singh
{"title":"Water-Flood Management in a Mature Field Through Pilot Approach","authors":"A. Thapliyal, Sudeb Kundu, Suparna Chowdhury, Harjinder Singh","doi":"10.2118/194579-MS","DOIUrl":"https://doi.org/10.2118/194579-MS","url":null,"abstract":"\u0000 A successful water injection management is a key to increase or stabilize oil production and to maximize oil recovery from a mature field. This paper describes an approach to draw maximum benefit through existing set up of a water injection in a mature offshore carbonate field of India. Water injection initiated after the six years of oil production and field is under water flood since last 28 years. The field witnessed favorable water flood condition and almost negligible aquifer support. During its long production period most of the producers had been sideracked from one to three times to target better saturation areas which has led to uneven subsurface water distribution. The field has also suffered less voidage compensation for quite some time.\u0000 To understand and mitigate the problem, a small pilot area within a field has been selected for implementing a good surveillance and monitoring program with pattern injection and possible intervention strategy. It was decided that based on the success of this pilot, the concept would be developed for implementation in step by step manner for entire field. The importance of multidisciplinary team has been recognized and detailed SWOT analysis was done for effective implementation of plan. Initially pilot area comprised of 15 oil producers and 4 water injectors. Conversion of one producer to water injector and restoration of water injection in 3 injectors were done as per plan and optimized injection rate (in this case maximum 3000 bbl per day) per injector were implemented. Peripheral pattern for pilot area with 5 injectors and 5 spot inverted patterns from rest 3 injectors were decided.\u0000 After one year of the implementation a thorough performance analysis of the pilot has been carried out which indicates the overall improvement of liquid and oil production rates along with reduction in GOR and decreasing trend of oil decline rates of producers.\u0000 The pilot approach has certainly helped to understand the Reservoir conformance in short duration of time. Encouraging results of this methodology guides to extent and implement this approach in other parts of field to cover the entire field in phased manner.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88053417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of Pore Pressure and Fracture Gradient in Volve Field, Norwegian North Sea","authors":"S. Sen, S. Ganguli","doi":"10.2118/194578-MS","DOIUrl":"https://doi.org/10.2118/194578-MS","url":null,"abstract":"\u0000 Maintaining a stable borehole and optimizing drilling are still considered to be vital practice for the success of any hydrocarbon field development and planning. The present study deliberates a case study on the estimation of pore pressure and fracture gradient for the recently decommissioned Volve oil field at the North Sea. High resolution geophysical logs drilled through the reservoir formation of the studied field have been used to estimate the overburden, pore pressure, and fracture pressure. The well-known Eaton’s method and Matthews-Kelly’s tools were used for the estimation of pore pressure and fracture gradient, respectively. Estimated outputs were calibrated and validated with the available direct downhole measurements (formation pressure measurements, LOT/FIT). Further, shear failure gradient has been calculated using Mohr-Coulomb rock failure criterion to understand the wellbore stability issues in the studied field. Largely, the pore pressure in the reservoir formation is hydrostatic in nature, except the lower Cretaceous to upper Jurassic shales, which were found to be associated with mild overpressure regimes. This study is an attempt to assess the in-situ stress system of the Volve field if CO2 is injected for geological storage in near future.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88397501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankesh Nagar, G. Dangwal, Chintan R Maniar, Nitin Bhad, I. Goyal, N. Pandey, Arunabh Parashar, S. Tiwari
{"title":"Sand Scouring - A New Stimulation Technique to Revive and Improve Injectivity of Water & Polymer Injectors in Mangala, Aishwarya & Bhagyam Onshore Fields in India","authors":"Ankesh Nagar, G. Dangwal, Chintan R Maniar, Nitin Bhad, I. Goyal, N. Pandey, Arunabh Parashar, S. Tiwari","doi":"10.2118/194589-MS","DOIUrl":"https://doi.org/10.2118/194589-MS","url":null,"abstract":"\u0000 The Mangala, Aishwaya & Bhagyam (MBA) fields are the largest discovered group of oil fields in Barmer Basin, Rajasthan, India. The fields contain medium gravity viscous crude (10-40cp) in high permeability (1-5 Darcy) sands. The fields have undergone pattern as well as peripheral water injection. In order to overcome adverse mobility ratio and improve sweep efficiency thereby increasing oil recovery, chemical EOR has been evaluated for implementation in these fields. The potential benefits from chemical enhanced oil recovery (EOR) had been recognized from early in the field development. Polymer flooding was identified for early implementation, which would be followed by stage wise implementation of Alkaline-Surfactant-Polymer (ASP) injection in fields like Mangala. Since the commencement of polymer injection, the Mangala field polymer injectors have displayed multiple injectivity issues. In addition, the Aishwarya and Bhagyam fields are dealing with low Void Replacement Ratios (VRR) for their ongoing water injection, which if not rectified could adversely affect recovery. While various types of injector stimulations are being used, injectivity increases are short lived. A new technique termed as ‘Sand Scouring’ has been successfully applied resuting in sustainable injectivity gains.\u0000 The technique involves pumping creating a small fracture with a pad injected above fracturing pressure and then scouring the fracture face with low concentration 20/40 sand slugs in range of 0.5 to 1 PPA 20/40. The treatments are pumped at the highest achievable rates with the available pumping equipment within the completion pressure limitations. Based upon the available tankage, the scheduled is designed such that pumping of a fixed volume of sand stage, a quick shut-down allows for mixing the next stage of slurry. The pumping schedule and a ‘scouring’ intent is deliberately designed to avoid requirement of fracturing equipment, related cleanout equipment and resulting costs. The challenge of conformance is addressed by designing the pumping schedule to incorporate stages of particulate diverters and validated using pre and post injection logging surveys. .\u0000 Sand scouring jobs in 16 wells have been conducted across Mangala, Bhagyam & Aishwarya injectors. Out of thesewells, 9 wells had zero injectivity while the other 7 required both injectivity and conformance improvement. Most of the treated wells resulted in multifold improvement of injectivity as compared to their prior injection parameters. Sand scouring resulted in sustained injection performance when compared with prior conventional methods of stimulation. Injectivity improvements from sand scouring lasted for an average of 3 months days as compared to 14 days for the conventional stimulations. Sand scouring evolution, design, results and plans for future improvement are all discussed in this paper.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88579431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}