Ankesh Nagar, G. Dangwal, Chintan R Maniar, Nitin Bhad, I. Goyal, N. Pandey, Arunabh Parashar, S. Tiwari
{"title":"冲砂—一种新的增产技术,可以恢复和提高印度Mangala、Aishwarya和Bhagyam陆上油田注水和聚合物注入器的注入能力","authors":"Ankesh Nagar, G. Dangwal, Chintan R Maniar, Nitin Bhad, I. Goyal, N. Pandey, Arunabh Parashar, S. Tiwari","doi":"10.2118/194589-MS","DOIUrl":null,"url":null,"abstract":"\n The Mangala, Aishwaya & Bhagyam (MBA) fields are the largest discovered group of oil fields in Barmer Basin, Rajasthan, India. The fields contain medium gravity viscous crude (10-40cp) in high permeability (1-5 Darcy) sands. The fields have undergone pattern as well as peripheral water injection. In order to overcome adverse mobility ratio and improve sweep efficiency thereby increasing oil recovery, chemical EOR has been evaluated for implementation in these fields. The potential benefits from chemical enhanced oil recovery (EOR) had been recognized from early in the field development. Polymer flooding was identified for early implementation, which would be followed by stage wise implementation of Alkaline-Surfactant-Polymer (ASP) injection in fields like Mangala. Since the commencement of polymer injection, the Mangala field polymer injectors have displayed multiple injectivity issues. In addition, the Aishwarya and Bhagyam fields are dealing with low Void Replacement Ratios (VRR) for their ongoing water injection, which if not rectified could adversely affect recovery. While various types of injector stimulations are being used, injectivity increases are short lived. A new technique termed as ‘Sand Scouring’ has been successfully applied resuting in sustainable injectivity gains.\n The technique involves pumping creating a small fracture with a pad injected above fracturing pressure and then scouring the fracture face with low concentration 20/40 sand slugs in range of 0.5 to 1 PPA 20/40. The treatments are pumped at the highest achievable rates with the available pumping equipment within the completion pressure limitations. Based upon the available tankage, the scheduled is designed such that pumping of a fixed volume of sand stage, a quick shut-down allows for mixing the next stage of slurry. The pumping schedule and a ‘scouring’ intent is deliberately designed to avoid requirement of fracturing equipment, related cleanout equipment and resulting costs. The challenge of conformance is addressed by designing the pumping schedule to incorporate stages of particulate diverters and validated using pre and post injection logging surveys. .\n Sand scouring jobs in 16 wells have been conducted across Mangala, Bhagyam & Aishwarya injectors. Out of thesewells, 9 wells had zero injectivity while the other 7 required both injectivity and conformance improvement. Most of the treated wells resulted in multifold improvement of injectivity as compared to their prior injection parameters. Sand scouring resulted in sustained injection performance when compared with prior conventional methods of stimulation. Injectivity improvements from sand scouring lasted for an average of 3 months days as compared to 14 days for the conventional stimulations. Sand scouring evolution, design, results and plans for future improvement are all discussed in this paper.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sand Scouring - A New Stimulation Technique to Revive and Improve Injectivity of Water & Polymer Injectors in Mangala, Aishwarya & Bhagyam Onshore Fields in India\",\"authors\":\"Ankesh Nagar, G. Dangwal, Chintan R Maniar, Nitin Bhad, I. Goyal, N. Pandey, Arunabh Parashar, S. Tiwari\",\"doi\":\"10.2118/194589-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Mangala, Aishwaya & Bhagyam (MBA) fields are the largest discovered group of oil fields in Barmer Basin, Rajasthan, India. The fields contain medium gravity viscous crude (10-40cp) in high permeability (1-5 Darcy) sands. The fields have undergone pattern as well as peripheral water injection. In order to overcome adverse mobility ratio and improve sweep efficiency thereby increasing oil recovery, chemical EOR has been evaluated for implementation in these fields. The potential benefits from chemical enhanced oil recovery (EOR) had been recognized from early in the field development. Polymer flooding was identified for early implementation, which would be followed by stage wise implementation of Alkaline-Surfactant-Polymer (ASP) injection in fields like Mangala. Since the commencement of polymer injection, the Mangala field polymer injectors have displayed multiple injectivity issues. In addition, the Aishwarya and Bhagyam fields are dealing with low Void Replacement Ratios (VRR) for their ongoing water injection, which if not rectified could adversely affect recovery. While various types of injector stimulations are being used, injectivity increases are short lived. A new technique termed as ‘Sand Scouring’ has been successfully applied resuting in sustainable injectivity gains.\\n The technique involves pumping creating a small fracture with a pad injected above fracturing pressure and then scouring the fracture face with low concentration 20/40 sand slugs in range of 0.5 to 1 PPA 20/40. The treatments are pumped at the highest achievable rates with the available pumping equipment within the completion pressure limitations. Based upon the available tankage, the scheduled is designed such that pumping of a fixed volume of sand stage, a quick shut-down allows for mixing the next stage of slurry. The pumping schedule and a ‘scouring’ intent is deliberately designed to avoid requirement of fracturing equipment, related cleanout equipment and resulting costs. The challenge of conformance is addressed by designing the pumping schedule to incorporate stages of particulate diverters and validated using pre and post injection logging surveys. .\\n Sand scouring jobs in 16 wells have been conducted across Mangala, Bhagyam & Aishwarya injectors. Out of thesewells, 9 wells had zero injectivity while the other 7 required both injectivity and conformance improvement. Most of the treated wells resulted in multifold improvement of injectivity as compared to their prior injection parameters. Sand scouring resulted in sustained injection performance when compared with prior conventional methods of stimulation. Injectivity improvements from sand scouring lasted for an average of 3 months days as compared to 14 days for the conventional stimulations. Sand scouring evolution, design, results and plans for future improvement are all discussed in this paper.\",\"PeriodicalId\":11150,\"journal\":{\"name\":\"Day 2 Wed, April 10, 2019\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, April 10, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194589-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194589-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sand Scouring - A New Stimulation Technique to Revive and Improve Injectivity of Water & Polymer Injectors in Mangala, Aishwarya & Bhagyam Onshore Fields in India
The Mangala, Aishwaya & Bhagyam (MBA) fields are the largest discovered group of oil fields in Barmer Basin, Rajasthan, India. The fields contain medium gravity viscous crude (10-40cp) in high permeability (1-5 Darcy) sands. The fields have undergone pattern as well as peripheral water injection. In order to overcome adverse mobility ratio and improve sweep efficiency thereby increasing oil recovery, chemical EOR has been evaluated for implementation in these fields. The potential benefits from chemical enhanced oil recovery (EOR) had been recognized from early in the field development. Polymer flooding was identified for early implementation, which would be followed by stage wise implementation of Alkaline-Surfactant-Polymer (ASP) injection in fields like Mangala. Since the commencement of polymer injection, the Mangala field polymer injectors have displayed multiple injectivity issues. In addition, the Aishwarya and Bhagyam fields are dealing with low Void Replacement Ratios (VRR) for their ongoing water injection, which if not rectified could adversely affect recovery. While various types of injector stimulations are being used, injectivity increases are short lived. A new technique termed as ‘Sand Scouring’ has been successfully applied resuting in sustainable injectivity gains.
The technique involves pumping creating a small fracture with a pad injected above fracturing pressure and then scouring the fracture face with low concentration 20/40 sand slugs in range of 0.5 to 1 PPA 20/40. The treatments are pumped at the highest achievable rates with the available pumping equipment within the completion pressure limitations. Based upon the available tankage, the scheduled is designed such that pumping of a fixed volume of sand stage, a quick shut-down allows for mixing the next stage of slurry. The pumping schedule and a ‘scouring’ intent is deliberately designed to avoid requirement of fracturing equipment, related cleanout equipment and resulting costs. The challenge of conformance is addressed by designing the pumping schedule to incorporate stages of particulate diverters and validated using pre and post injection logging surveys. .
Sand scouring jobs in 16 wells have been conducted across Mangala, Bhagyam & Aishwarya injectors. Out of thesewells, 9 wells had zero injectivity while the other 7 required both injectivity and conformance improvement. Most of the treated wells resulted in multifold improvement of injectivity as compared to their prior injection parameters. Sand scouring resulted in sustained injection performance when compared with prior conventional methods of stimulation. Injectivity improvements from sand scouring lasted for an average of 3 months days as compared to 14 days for the conventional stimulations. Sand scouring evolution, design, results and plans for future improvement are all discussed in this paper.