Luis Sorinas, Robert H. Weisberg, Yonggang Liu, Jason Law
{"title":"Ocean-atmosphere heat exchange seasonal cycle on the West Florida Shelf derived from long term moored data","authors":"Luis Sorinas, Robert H. Weisberg, Yonggang Liu, Jason Law","doi":"10.1016/j.dsr2.2023.105341","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105341","url":null,"abstract":"<div><p>Twenty-three years of surface meteorological and oceanographic data sampled from moored buoys are used to study the seasonal and interannual variations of ocean–atmosphere heat exchange and its influence on West Florida Continental Shelf (WFS) water temperature and stratification. The data are from the University of South Florida's Coastal Ocean Monitoring and Prediction System (COMPS), part of the Southeast Coastal Ocean Observing Regional Association (SECOORA). Observed are incoming short and longwave radiation, air and sea surface temperatures (AT and SST), barometric pressure, relative humidity, wind velocity, water column velocity profiles, and water column temperature at discrete depths. These data are used to estimate net shortwave and longwave radiation and sensible and latent heat fluxes via the COARE 3.6 algorithm. When combined, these radiative and turbulent heat flux influences are compared with the heating and cooling of the WFS water column and SST. On seasonal average, heating starts in February and lasts through August, with a maximum rate of change in May, while cooling starts in September and lasts through January, with the maximum rate of change in October. Also on seasonal average, SST varies from 18.4 °C in February to 30.4 °C in August at mooring C10 (at the 25 m isobath) and from 20.1 °C in February to 30.2 °C in August at mooring C12 (at the 50 m isobath), the differences in the seasonal range being due to increased ocean circulation influence in deeper water. Both the spring and fall transition onsets, February and August, respectively, occur when the sign of the net heat flux changes. The water column begins to stratify in March, peaking in June–July and lagging the surface heating by one or two months, then decreasing through September at C10 and October at C12. Stratification is also modified by persistent upwelling when the Gulf of Mexico Loop Current (LC) interacts with the WFS slope at its southwest corner near the Dry Tortugas. Interannual temperature anomalies from the seasonal cycle are also related to how the LC interacts with the WFS slope.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105341"},"PeriodicalIF":3.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Steffen , Hyodae Seo , Carol Anne Clayson , Suyang Pei , Toshiaki Shinoda
{"title":"Impacts of tidal mixing on diurnal and intraseasonal air-sea interactions in the Maritime Continent","authors":"John Steffen , Hyodae Seo , Carol Anne Clayson , Suyang Pei , Toshiaki Shinoda","doi":"10.1016/j.dsr2.2023.105343","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105343","url":null,"abstract":"<div><p>The Maritime Continent (MC) is a region with enhanced tidal mixing and ocean cooling, which influences regional-scale sea surface temperatures (SSTs). We examine the coupled impacts of tidal mixing on near-surface stratification, SST, and deep convection on diurnal and intraseasonal time-scales, using ensembles of high-resolution, coupled ocean-atmosphere regional model simulations, with and without tidal forcing. Results show that the area-averaged SST in the eastern MC is reduced by 0.20 °C due to tidal forcing, with cooling exceeding 1 °C in the nearshore zones of shallow and complex bathymetry. The reduced SSTs decrease surface heat fluxes, leading to tropospheric drying and reduced precipitation, which are most pronounced in the nearshore zones. The results show that the magnitude of tidally-induced SST cooling is phase-dependent during the passage of the Madden Julian Oscillation (MJO). Strong westerly winds enhance entrainment cooling through wind-driven mixing and upwelling during the active phase. Conversely, the upper-ocean stratification is enhanced during the suppressed phase, and SSTs are less sensitive to subsurface cooling. Such spatio-temporal variability in the SST response to tides is accompanied by consistent changes to deep convection and atmospheric circulation. On the diurnal time-scale, nearshore cooling weakens the early-morning convection when the land-based convection propagates offshore and interacts with the cooler SST. On intraseasonal time-scales, the coupling between SST and precipitation is strengthened because of the asymmetric impacts of tide-induced mixing on SST and MJO-induced winds. The robust SST and precipitation responses demonstrated in this study suggest the need for an accurate representation of tidal forcing and vertical mixing processes in local MJO prediction models for the MC.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105343"},"PeriodicalIF":3.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Chen , Yonggang Liu , Robert H. Weisberg , Steven A. Murawski , Sherryl Gilbert , David F. Naar , Lianyuan Zheng , Matthew Hommeyer , Catherine Dietrick , Mark E. Luther , Cheryl Hapke , Edward Myers , Saeed Moghimi , Corey Allen , Liujuan Tang , Bahram Khazaei , Shachak Pe'eri , Ping Wang
{"title":"Hydrodynamic response to bathymetric changes in Tampa Bay, Florida","authors":"Jing Chen , Yonggang Liu , Robert H. Weisberg , Steven A. Murawski , Sherryl Gilbert , David F. Naar , Lianyuan Zheng , Matthew Hommeyer , Catherine Dietrick , Mark E. Luther , Cheryl Hapke , Edward Myers , Saeed Moghimi , Corey Allen , Liujuan Tang , Bahram Khazaei , Shachak Pe'eri , Ping Wang","doi":"10.1016/j.dsr2.2023.105344","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105344","url":null,"abstract":"<div><p><span><span>Bathymetric changes within estuarine and coastal waters can alter the hydrodynamic evolution of sea level and currents, which in turn can influence the ecosystem by altering material property distributions. Here we apply the Tampa Bay Coastal Ocean Model (TBCOM), with an unstructured, high-resolution grid to investigate the hydrodynamic response to bathymetric changes at the periphery of the Tampa Bay mouth over a relatively small area when compared to the whole model domain. Two separate numerical experiments are conducted with the same forcing, one using the original bathymetry and the other employing a revised synthetic bathymetry. The simulated sea level, amplitude and phase of the M2 tide, and associated currents are compared for the two experiments. Significant changes in water level (up to+/-10 cm) and </span>current velocities (up to 20 cm/s) are found in the shallow peripheral area with the two different bathymetric data sets. These bathymetric influences are not limited to the locations where the bathymetric changes occur; they also extend to remote areas of the bay. Since Tampa Bay bathymetry varies with storm-induced sediment redistributions and human actives such as shipping channel </span>dredging<span> and beach nourishment, these findings emphasize the need for accurate and updated bathymetry for coastal ocean modeling and applications.</span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105344"},"PeriodicalIF":3.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92033258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Lovecchio , Louis Clément , Claire Evans , Rachel Rayne , Cynthia Dumousseaud , Saeed Roshan , Sarah L.C. Giering , Adrian Martin
{"title":"Export of Dissolved Organic Carbon (DOC) compared to the particulate and active fluxes near South Georgia, Southern Ocean","authors":"Elisa Lovecchio , Louis Clément , Claire Evans , Rachel Rayne , Cynthia Dumousseaud , Saeed Roshan , Sarah L.C. Giering , Adrian Martin","doi":"10.1016/j.dsr2.2023.105338","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105338","url":null,"abstract":"<div><p>Quantifying the relative contributions of the export of particulate organic carbon (POC), dissolved organic carbon (DOC) and active fluxes by migrating organisms is essential to understand the functioning and vulnerability of the ocean's biological pump. However, these fluxes are rarely measured at the same time. Here we provide a first simultaneous comparison of these biological pump components in the region of South Georgia. We use a combination of in-situ data and an inverse model to calculate the DOC export and the suspended POC export and compare them to the sinking POC and active export. We find that, in this region, the DOC total export contributes about 6.6% (23.0–37.5 mg C m<sup>−2</sup> day<sup>−1</sup>) to the total export flux, the active flux has no discernible contribution, and the sinking POC flux is dominant with a mean value of 409 mg C m<sup>−2</sup> day<sup>−1</sup>. Diapycnal fluxes of DOC obtained from the cruise data constitute only a minor fraction (0.05–1.28 mg C m<sup>−2</sup> day<sup>−1</sup>) of the total DOC export estimated by the inverse model and are exceeded on average by the diapycnal flux of suspended POC. Our results also indicate that the total export of DOC is driven by isopycnal transport. Future fieldwork in the region of South Georgia should focus on quantifying the isopycnal flux of DOC. Future measurement campaigns should also aim to simultaneously measure the particulate, dissolved and active components of the biological pump at contrasting locations and at different times to resolve the variability of their relative contribution.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105338"},"PeriodicalIF":3.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhanjiu Hao , Zhenhua Xu , Ming Feng , Peiwen Zhang , Jia You , Baoshu Yin
{"title":"Seasonal variability of eddy kinetic energy in the Banda Sea revealed by an ocean model: An energy budget perspective","authors":"Zhanjiu Hao , Zhenhua Xu , Ming Feng , Peiwen Zhang , Jia You , Baoshu Yin","doi":"10.1016/j.dsr2.2023.105320","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105320","url":null,"abstract":"<div><p>Seasonal eddy kinetic energy (EKE) variability in the Banda Sea during 1993–2014 is studied from an energy budget perspective, based on the outputs of Ocean Forecasting Australian Model version 3. High EKE is confined within the upper 300 m of the western Banda Sea with the largest intensity exceeding 3 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>3</sup> J/m<sup>2</sup><span><span> in the northwest monsoon (NWM) season. In this strong EKE region during NWM, eddies derive almost two thirds of their kinetic energy from the direct wind power input (WP), with additional contributions from the barotropic (BT) and baroclinic instability (BC) of the background flow. Both WP and BT modulate the EKE </span>seasonality<span> and drive the peak energy during NWM, while BC strengthens in the southeast monsoon (SEM) season because of the intensified baroclinicity of the upper circulation. The westerly wind bursts associated with the Madden-Julian Oscillation (MJO), together with steep topography, facilitate more cyclonic eddy generation events in the western Banda Sea during NWM. During SEM, EKE becomes relatively moderate across the Banda Sea but with a regional peak to the southwest of the Buru Island, which can be attributed to island wake effect. Over the Banda Sea, WP, BT and BC contribute 74% (42%), 14% (19%) and 12% (39%) of total energy to EKE during NWM (SEM), respectively. The majority of EKE generated is diverged horizontally by pressure work and dissipated by turbulent viscosity, with dissipation depleting the most. This study highlights the importance of both monsoon and MJO wind forcing in generating EKE variability along the pathway of the Indonesian Throughflow.</span></span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105320"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd
{"title":"A data-assimilative modeling investigation of Gulf Stream variability","authors":"Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd","doi":"10.1016/j.dsr2.2023.105319","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105319","url":null,"abstract":"<div><p>An advanced data-assimilative ocean circulation model is used to investigate Gulf Stream<span><span><span><span> (GS) variability during 2017–2018. The modeling system applies a strong-constraint, 4D variational data assimilation<span> algorithm. It assimilates satellite-based sea surface height and </span></span>sea surface temperature measurements and in situ temperature and </span>salinity profiles. Model skill assessment metrics along with comparisons of GS position and GS's three-dimensional mean kinetic energy with historical observations are applied to validate the data-assimilative model. The resulting time- and space-continuous ocean state estimates are used to diagnose eddy kinetic energy conversion and cross-stream eddy heat and salt fluxes over the two-year study period. The processes leading to kinetic energy conversion are primarily due to GS meanders. Significant inverse energy cascading (EKE→MKE and EKE→EPE) can occur during GS-eddy interactions, particularly during onshore intrusions or offshore meanderings of the GS. Throughout the two-year study period, the cross-stream eddy heat and salt fluxes off Cape Hatteras were predominantly positive (onshore). Both GS offshore meandering (occurring 44% of the time and associated with shelf/slope water export) and GS intrusion (occurring 56% of the time) contribute to onshore heat and salt transport. Improved understanding of these processes and dynamics requires strong integration of an advanced observational infrastructure that combines </span>remote sensing; fixed, mobile, and shore-based observing components; and high-resolution data assimilative models.</span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105319"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sartimbul , H. Nakata , E.Y. Herawati , E. Rohadi , D. Yona , L.I. Harlyan , A.D.R. Putri , V.A. Winata , R.I. Khasanah , Z. Arifin , R.D. Susanto , F.M. Lauro
{"title":"Monsoonal variation and its impact on the feeding habit of Bali Sardinella (S. lemuru Bleeker, 1853) in Bali Strait","authors":"A. Sartimbul , H. Nakata , E.Y. Herawati , E. Rohadi , D. Yona , L.I. Harlyan , A.D.R. Putri , V.A. Winata , R.I. Khasanah , Z. Arifin , R.D. Susanto , F.M. Lauro","doi":"10.1016/j.dsr2.2023.105317","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105317","url":null,"abstract":"<div><p><em>Sardinella lemuru</em><span> is known as a highly opportunistic and flexible forager. Their high abundance in the coastal upwelling of Bali Strait was initially attributed to their feeding habit on phytoplankton and hence attaining higher catch. It was challenged by subsequent reports which suggested zooplankton as their main diet. This difference is due to the lack of information on the one-year cycle of its seasonal feeding. Here we used a combination of the plankton in seawater and the stomach contents of </span><em>S. lemuru</em><span> and monsoonal oceanographic changes at Bali Strait to determine the diet composition and food selectivity in four fishing seasons of 2012–2013. The result shows that </span><em>S. lemuru</em> is an omnivorous fish, and its diet composition depends on plankton availability in the environment, size classes, and the monsoonal oceanographic change influenced by upwelling. This condition strongly supported high nutrients for phytoplankton availability in the seawater with medium diversity and moderate community stability, except in inter-monsoon-2 (Trans-2). Phytoplankton was found as the main diet item of <em>S. lemuru</em> during the higher abundance of phytoplankton (82.26% <span><em>Rhizosolenia</em><em> stolterfothii</em></span>) in Trans-2. In contrast, its main diet was substituted by zooplankton (51.96% <span><em>Nauplius</em><em> of Paraeuchaeta norvegica</em></span>) during lower phytoplankton abundance in the northwest monsoon (NW). In addition, <em>S. lemuru</em><span> has adaptive strategies in feeding habits: It not only has flexibility but also selectivity in the feeding habit, supported by the ability to perform vertical migration for plankton grazing in different depths, move to another feeding ground, or plankton might be carried by the Indonesian Throughflow (ITF) into the Bali Strait. This study provides valuable information on the feeding ecology of </span><em>S. lemuru</em>, possibly providing a scientific basis for the proper management of <em>the S. lemuru</em> fishery in Bali Strait.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105317"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelly Vasbinder , Cameron H. Ainsworth, Yonggang Liu, Robert H. Weisberg
{"title":"Gulf of Mexico larval dispersal: Combining concurrent sampling, behavioral, and hydrodynamic data to inform end-to-end modeling efforts through a Lagrangian dispersal model","authors":"Kelly Vasbinder , Cameron H. Ainsworth, Yonggang Liu, Robert H. Weisberg","doi":"10.1016/j.dsr2.2023.105323","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105323","url":null,"abstract":"<div><p><span><span>We developed a Lagrangian larval dispersal model to estimate trajectories for eleven fish taxa inhabiting the Gulf of Mexico (GOM). Dispersal models are at family level resolution for </span>Scaridae<span>, Lutjanidae<span>, Scombridae<span>, Labridae, Ophichthidae, and Ophidiidae, at genus level resolution for </span></span></span></span><em>Hemanthias</em>, and at species level resolution for <span><span><em>Trachurus</em><span><em> lathami, </em><em>Decapterus</em><em> punctatus, </em></span></span><em>Katsuwonus pelamis</em><em>,</em></span> and <span><em>Euthynnus</em><em> alleteratus.</em></span><span> Hydrodynamics are provided by the West Florida Coastal Ocean Model (WFCOM). Larval samples are from the spring and fall SEAMAP ichthyoplankton<span> surveys from 2007 to 2011. The Lagrangian model was run backwards/forwards in time from the sampling event to estimate spawning/settlement locations. Results were used to update larval dispersal dynamics in the GOM Atlantis ‘end-to-end’ ecosystem model for twelve functional groups. We compare dispersal and non-dispersal scenarios in the Gulf of Mexico Atlantis model and find differences in stock abundance and distribution of fish. This highlights that the abundance and distribution of fishery resources are sensitive to changing circulation patterns. This work takes an interdisciplinary approach to understanding larval dynamics and their impacts on ecosystems at the intersection of predictive statistical modeling, hydrodynamic modeling, and ecosystem modeling.</span></span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105323"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander K. Nickerson, Robert H. Weisberg, Lianyuan Zheng, Yonggang Liu
{"title":"Sea surface temperature trends for Tampa Bay, West Florida Shelf and the deep Gulf of Mexico","authors":"Alexander K. Nickerson, Robert H. Weisberg, Lianyuan Zheng, Yonggang Liu","doi":"10.1016/j.dsr2.2023.105321","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105321","url":null,"abstract":"<div><p><span><span><span>Sea surface temperatures<span> for Tampa Bay, the West Florida Continental Shelf (WFS) and the adjacent deep </span></span>Gulf of Mexico are examined for trends. Data sets are from stations maintained by the Hillsborough County Environmental Protection Commission, buoys maintained by the University of South Florida Coastal Ocean Monitoring and Prediction System and the National Oceanic and Atmosphere Administration (NOAA) National </span>Data Buoy Center, the Optimum Interpolation Sea Surface Temperature analyses by the NOAA National Centers for Environmental Information, and the Hadley Centre Sea Surface Temperature. These various data sets, each with different record lengths, require the consideration of trends both on the basis of record length and start time. Tampa Bay shows a warming trend, but with considerable inter-annual variability and start time bias resulting in a lack of statistical significance in more recent years. The WFS is also generally warming, and its inter-annual variability is largely controlled by the upwelling of cooler, deeper Gulf of Mexico water across the shelf break. The deep GOM shows statistically significant warming in most of the data except for the “gappy” records from buoys, both along the continental shelf and in the deep water. Trends in the Gulf of Mexico are mostly between 0.1 and 0.5 </span><sup>°</sup>C/decade, somewhat larger than the secular rise found globally, although within the range of the observed decadal variability.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105321"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Chen, Robert H. Weisberg, Yonggang Liu, Lianyuan Zheng, Jason Law, Sherryl Gilbert, Steven A. Murawski
{"title":"A Tampa Bay coastal ocean model (TBCOM) nowcast/forecast system","authors":"Jing Chen, Robert H. Weisberg, Yonggang Liu, Lianyuan Zheng, Jason Law, Sherryl Gilbert, Steven A. Murawski","doi":"10.1016/j.dsr2.2023.105322","DOIUrl":"https://doi.org/10.1016/j.dsr2.2023.105322","url":null,"abstract":"<div><p><span><span><span>As a partially mixed estuary, Tampa Bay is influenced both by its connections to the adjacent </span>Gulf of Mexico<span> (GOM) and what occurs locally within the estuary. To assist in addressing the many scientific questions arising from various environmental factors, a very high resolution Tampa Bay Coastal Ocean Model (TBCOM) is modified to downscale from the deep GOM, across the continental shelf and into Tampa Bay to provide daily, automated nowcasts and forecasts. Veracity tests are provided for sea levels and currents forced by tides, synoptic weather variations and for extreme events. The model is also demonstrated to reproduce the net </span></span>estuarine circulation through comparisons between in situ observations and model simulations. With demonstrated accuracy, TBCOM forecast sea levels are provided online as a reference for navigation support and for extreme events such as hurricane storm surge. Model simulations, even with a perfect model, are subject to errors by the forcing functions. For Tampa Bay, the NOAA NAM winds used to force the model are found to underestimate the actual winds, suggesting that additional wind observations for assimilation into operational </span>weather forecast<span> models may offer further improvements. This finding highlights the need for further coordination between coastal ocean observing systems and the ocean and atmosphere modeling communities. With coastal ocean and estuary material properties determined largely by the circulation, most ecological applications require accurate and timely circulation information, which the TBCOM Nowcast/Forecast System for Tampa Bay endeavors to provide.</span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105322"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}