Current organic synthesis最新文献

筛选
英文 中文
Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells. 在微波辐照下或不在微波辐照下通过点击化学合成新型氟苯基三唑及其作为 SiHa 细胞抗增殖剂的评估。
IF 1.8 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230420084000
Johana Aguilar, Elisa Leyva, Silvia Elena Loredo-Carrillo, Agobardo Cárdenas-Chaparro, Antonio Martínez-Richa, Hiram Hernández-López, Jorge Gustavo Araujo-Huitrado, Angélica Judith Granados-López, Yamilé López-Hernández, Jesús Adrián López
{"title":"Synthesis of Novel Fluoro Phenyl Triazoles <i>Via</i> Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells.","authors":"Johana Aguilar, Elisa Leyva, Silvia Elena Loredo-Carrillo, Agobardo Cárdenas-Chaparro, Antonio Martínez-Richa, Hiram Hernández-López, Jorge Gustavo Araujo-Huitrado, Angélica Judith Granados-López, Yamilé López-Hernández, Jesús Adrián López","doi":"10.2174/1570179420666230420084000","DOIUrl":"10.2174/1570179420666230420084000","url":null,"abstract":"<p><strong>Aims: </strong>Perform the synthesis of novel fluoro phenyl triazoles <i>via</i> click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells.</p><p><strong>Background: </strong>Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents.</p><p><strong>Objectives: </strong>Synthesize novel fluoro phenyl triazoles <i>via</i> click chemistry and evaluate their antiproliferative activity.</p><p><strong>Methods: </strong>First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells.</p><p><strong>Results: </strong>Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom.</p><p><strong>Conclusion: </strong>Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9385696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Phentermine and its Derivatives. 芬特明及其衍生物的合成。
IF 1.8 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230530095245
Khushbu Upadhyaya, Shruti Shukla, Bharti Parkash Meena, Jaya Dwivedi
{"title":"Synthesis of Phentermine and its Derivatives.","authors":"Khushbu Upadhyaya, Shruti Shukla, Bharti Parkash Meena, Jaya Dwivedi","doi":"10.2174/1570179420666230530095245","DOIUrl":"10.2174/1570179420666230530095245","url":null,"abstract":"<p><p>In recent years, a growing global concern has been obesity. Patients with obesity are at major risk for developing a number of diseases. These diseases may significantly impact patient's daily lives and increase the mortality rate. Over a year, medication for obesity has undergone substantial changes. An amphetamine-like prescription drug called Phentermine (Adipex-P, Lomaira) is used to suppress appetite. In the last few years, Phentermine and its derivatives have attracted much attention due to their use in weight reduction; by reducing appetite or prolonging the feeling of fullness, it can aid in weight reduction. So, reviewing the synthesis of Phentermine and its derivatives becomes imperative. Therefore, various synthetic routes for Phentermine (from benzaldehyde, isopropyl phenyl ketone, dimethyl benzyl carbinol) and its derivatives synthesis, involving ortho-palladation, are also reviewed here comprehensively.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9545741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Antimicrobial and Antioxidant Activity of Some New Pyrazolines Containing Azo Linkages. 一些含偶氮连接的新型吡唑类化合物的合成、抗菌和抗氧化活性。
IF 1.7 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230815124516
Awaz Jamil Hussein
{"title":"Synthesis, Antimicrobial and Antioxidant Activity of Some New Pyrazolines Containing Azo Linkages.","authors":"Awaz Jamil Hussein","doi":"10.2174/1570179420666230815124516","DOIUrl":"10.2174/1570179420666230815124516","url":null,"abstract":"<p><strong>Background: </strong>Pyrazolines and azo-pyrazolines are influential groups of heterocyclic compounds with two nitrogen atoms inside the five-membered ring. They play an important role in a wide range of biological processes, such as antifungal, antioxidant, antimalarial and other antimicrobial activities.</p><p><strong>Objective: </strong>The main objective of this study is to synthesize some new heterocyclic compounds with antioxidant and antimicrobial activity Methods: One-pot three components and traditional synthesis of new azo-pyrazoline compounds were achieved in this work. The preparation process has been started by diazotizing 4-(6-methylbenzothiazol-2-yl) benzamine and its coupling reaction with 4-hydroxy acetophenone producing azo-acetophenone, followed by benzylation with benzyl chloride to form the starting material, azo-benzyloxy acetophenone. A series of substituted benzaldehydes were reacted with the latter compound via one pot and classical methods, forming new chalcones containing azo linkages and benzyloxy moieties, which were then converted into new target azo-pyrazoline derivatives.</p><p><strong>Results: </strong>The structures of the synthesized compounds were confirmed by spectroscopic techniques using FT-IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, and <sup>13</sup>C- DEPT- 135 spectra. Finally, the synthesized compounds were screened for their antioxidant and antimicrobial activities against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>.</p><p><strong>Conclusion: </strong>Overall, the one-pot three-component synthesis of pyrazoline compounds generally provides advantages in terms of efficiency, simplicity, and time-consumption compared to classical synthesis methods. Hence, the study advocates the one-pot method because it eliminates the tedious process of making chalcones, which takes time, materials, and unnecessary effort. Therefore, this is the most convenient and effective approach to green chemistry.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10001092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetra-azolium Salts Induce Significant Cytotoxicity in Human Colon Cancer Cells In vitro. 四唑盐在体外诱导人类结肠癌细胞产生显著的细胞毒性。
IF 1.7 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179421666230824151219
Muhammad Ashraf, Amna Kamal, Ejaz Ahmed, Haq Nawaz Bhatti, Muhammad Arshad, Muhammad Adnan Iqbal
{"title":"Tetra-azolium Salts Induce Significant Cytotoxicity in Human Colon Cancer Cells <i>In vitro</i>.","authors":"Muhammad Ashraf, Amna Kamal, Ejaz Ahmed, Haq Nawaz Bhatti, Muhammad Arshad, Muhammad Adnan Iqbal","doi":"10.2174/1570179421666230824151219","DOIUrl":"10.2174/1570179421666230824151219","url":null,"abstract":"<p><strong>Background: </strong>Azolium salts are the organic salts used as stable precursors for generating N-Heterocyclic Carbenes and their metal complexes. Azolium salts have also been reported to have significant biological potential. Hence, in the current study, four tetra-dentate azolium salts were derived from bis-azolium salts by a new synthetic strategy.</p><p><strong>Methods: </strong>The tetra azolium salts have been synthesized by reacting the imidazole or methyl imidazole with dibromo xylene (meta, para)/ 1-bromo methyl imidazole or dibromo ethane resulting in the mono or bis azolium salts namely I-IV. V-VII have been obtained by reacting I with II-IV, resulting in the tetra azolium salts. Each product was analyzed by various analytical techniques, i.e., microanalysis, FT-IR, and NMR (1H & 13C). Salts V-VII were evaluated for their antiproliferative effect against human colon cancer cells (HCT-116) using MTT assay.</p><p><strong>Results: </strong>Four chemical shifts for acidic protons between 8.5-9.5 δ ppm in 1H NMR and resonance of respective carbons around 136-146 δ ppm in 13C NMR indicated the successful synthesis of tetra azolium salts. Salt V showed the highest IC50 value, 24.8 μM among all synthesized compounds.</p><p><strong>Conclusion: </strong>Tetra-azolium salts may play a better cytotoxicity effect compared to mono-, bi-& tri-azolium salts.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10124101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-pot Synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter. 以盐酸咪唑为促进剂,从邻氨基苯甲酸和 DMF 衍生物中单锅合成 2,3-二取代-4(3H)-喹唑啉酮。
IF 1.7 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179421666230815151540
Yin Wang, Xiuyu Zhang, Suzhen Li, Mengyi Guo, Wanqian Ma, Jianyong Yuan
{"title":"One-pot Synthesis of 2,3-disubstituted-4(3<i>H</i>)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter.","authors":"Yin Wang, Xiuyu Zhang, Suzhen Li, Mengyi Guo, Wanqian Ma, Jianyong Yuan","doi":"10.2174/1570179421666230815151540","DOIUrl":"10.2174/1570179421666230815151540","url":null,"abstract":"<p><p>As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10054925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrene Appendant Triazole-based Chemosensors for Sensing Applications. 用于传感应用的芘附属三唑类化学传感器。
IF 1.8 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230621124119
Tarkeshwar Maddeshiya, Manoj K Jaiswal, Arpna Tamrakar, Gargi Mishra, Chhama Awasthi, Mrituanjay D Pandey
{"title":"Pyrene Appendant Triazole-based Chemosensors for Sensing Applications.","authors":"Tarkeshwar Maddeshiya, Manoj K Jaiswal, Arpna Tamrakar, Gargi Mishra, Chhama Awasthi, Mrituanjay D Pandey","doi":"10.2174/1570179420666230621124119","DOIUrl":"10.2174/1570179420666230621124119","url":null,"abstract":"<p><p>Over the last two decades, the design and development of fluorescent chemosensors for the targeted detection of Heavy Transition-metal (HTM) ions, anions, and biological analytes, have drawn much interest. Since the introduction of click chemistry in 2001, triazole moieties have become an increasingly prominent theme in chemosensors. Triazoles generated <i>via</i> click reactions are crucial for sensing various ions and biological analytes. Recently, the number of studies in the field of pyrene appendant triazole moieties has risen dramatically, with more sophisticated and reliable triazole-containing chemosensors for various analytes of interest described. This tutorial review provides a general overview of pyrene appendant-triazole-based chemosensors that can detect a variety of metal cations, anions, and neutral analytes by using modular click-derived triazoles.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9727240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Penicillin Derivatives Against Selected Multiple-drug Resistant Bacterial Strains: Design, Synthesis, Structural Analysis, In Silico and In Vitro Studies. 针对部分多重耐药菌株的新型青霉素衍生物:设计、合成、结构分析、硅学和体外研究。
IF 1.8 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230510104319
Narmin Hamaamin Hussen, Shokhan Jamal Hamid, Mohammed Nawzad Sabir, Aso Hameed Hasan, Sewara Jalal Mohammed, Aras Ahmed Kamal Shali
{"title":"Novel Penicillin Derivatives Against Selected Multiple-drug Resistant Bacterial Strains: Design, Synthesis, Structural Analysis, <i>In Silico</i> and <i>In Vitro</i> Studies.","authors":"Narmin Hamaamin Hussen, Shokhan Jamal Hamid, Mohammed Nawzad Sabir, Aso Hameed Hasan, Sewara Jalal Mohammed, Aras Ahmed Kamal Shali","doi":"10.2174/1570179420666230510104319","DOIUrl":"10.2174/1570179420666230510104319","url":null,"abstract":"<p><strong>Introduction: </strong>The rising numbers of multiple drug-resistant (MDR) pathogens and the consequent antibacterial therapy failure that resulted in severe medical conditions push to illustrate new molecules with extended activity against the resistant strains. In this manner, chemical derivatization of known antibiotics is proposed to save efforts in drug discovery, and penicillins serve as an ideal in this regard.</p><p><strong>Methods: </strong>Seven synthesized 6-aminopenicillanic acid-imine derivatives (2a-g) were structure elucidated using FT-IR, 1H NMR, <sup>13</sup>C NMR, and MS spectroscopy. <i>In silico</i> molecular docking and ADMET studies were made. The analyzed compounds obeyed Lipinski's rule of five and showed promising <i>in vitro</i> bactericidal potential when assayed against <i>E. coli, E. cloacae, P. aeruginosa, S. aureus</i>, and <i>A. baumannii</i>. MDR strains using disc diffusion and microplate dilution techniques.</p><p><strong>Results: </strong>The MIC values were 8 to 32 μg/mL with more potency than ampicillin, explained by better membrane penetration and more ligand-protein binding capacity. The 2g entity was active against <i>E. coli</i>. This study was designed to find new active penicillin derivatives against MDR pathogens.</p><p><strong>Conclusion: </strong>The products showed antibacterial activity against selected MDR species and good PHK, PHD properties, and low predicted toxicity, offering them as future candidates that require further preclinical assays.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9859913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition. 超越 1,2,3-三唑:铜催化叠氮烷烃环化反应生成的酮亚胺的形成与应用。
IF 1.8 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666220929152449
Flor M Escandón-Mancilla, Nelly González-Rivas, Murali V Basavanag Unnamatla, Marco A García-Eleno, David Corona-Becerril, Bernardo A Frontana-Uribe, Erick Cuevas-Yañez
{"title":"Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition.","authors":"Flor M Escandón-Mancilla, Nelly González-Rivas, Murali V Basavanag Unnamatla, Marco A García-Eleno, David Corona-Becerril, Bernardo A Frontana-Uribe, Erick Cuevas-Yañez","doi":"10.2174/1570179420666220929152449","DOIUrl":"10.2174/1570179420666220929152449","url":null,"abstract":"<p><p>Ketemines represent an interesting class of organic intermediates that has undergone a regrowth as a consequence of recent extensions of copper catalyzed azide alkyne cycloaddition (Cu- AAC) to other synthetic fields. This review summarizes the most recent generation methods of ketimines from CuAAC reaction, highlighting chemical properties focused on the synthesis of cyclic compounds, among others, affording a general outlook towards the development of new biologically active compounds.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Synthetic Methods of Oxazine and Thiazine Scaffolds as Promising Medicinal Compounds: A Mini-review. 恶嗪和噻嗪支架作为有前景的药物化合物的绿色合成方法:综述。
IF 1.7 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/1570179420666230811092847
Abdulelah Aljuaid, Mamdouh Allahyani, Ahad Amer Alsaiari, Mazen Almehmadi, Abdulaziz Alsharif, Mohammad Asif
{"title":"Green Synthetic Methods of Oxazine and Thiazine Scaffolds as Promising Medicinal Compounds: A Mini-review.","authors":"Abdulelah Aljuaid, Mamdouh Allahyani, Ahad Amer Alsaiari, Mazen Almehmadi, Abdulaziz Alsharif, Mohammad Asif","doi":"10.2174/1570179420666230811092847","DOIUrl":"10.2174/1570179420666230811092847","url":null,"abstract":"<p><p>Medical researchers have paid close attention to the green synthesis of oxazine and thiazine derivatives since they provided a lead molecule for the creation of numerous possible bioactive compounds. This review provides more information on green synthesis, which will be very helpful to researchers in creating the most effective, affordable, and clinically significant thiazine and oxazine derivatives that are anticipated to have strong pharmacological effects. This has resulted in the identification of several substances with a wide range of intriguing biological functions. This article's goal is to examine the numerous green chemical processes used to create oxazine and thiazine derivatives and their biological activity. We anticipate that researchers interested in oxazine and thiazine chemicals will find this material to be useful. We anticipate that medicinal chemists looking for new active medicinal components for drug discovery and advance progress will find this review of considerable interest.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41110523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advancements in the Synthesis of α-fluoroalkylated Azine-derived Heterocycles through Direct Fluorination. 直接氟化法合成α-氟烷基化氮杂环的研究进展。
IF 1.7 4区 化学
Current organic synthesis Pub Date : 2024-01-01 DOI: 10.2174/0115701794271650231016094853
Oksana M Shavrina, Yuliya V Rassukana, Petro P Onysko
{"title":"Recent Advancements in the Synthesis of α-fluoroalkylated Azine-derived Heterocycles through Direct Fluorination.","authors":"Oksana M Shavrina, Yuliya V Rassukana, Petro P Onysko","doi":"10.2174/0115701794271650231016094853","DOIUrl":"10.2174/0115701794271650231016094853","url":null,"abstract":"<p><p>The review highlights recent advancements in the synthesis of α-fluoro and α,α- difluoroalkylated azines, focusing on two main approaches. The first approach involves nucleophilic deoxofluorination, wherein α-hydroxy- or α-oxoalkylated azines are treated with diethylaminosulfur trifluoride or other S-F reagents to introduce fluorine atoms. The second approach employs direct electrophilic benzylic fluorination, whereby alkylazines undergo fluorination using N-F reagents. Both methods provide flexibility in designing and synthesizing fluoroalkylated heterocycles.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信