Day 2 Thu, March 17, 2022最新文献

筛选
英文 中文
Method for Drawdown Analysis of a Multi-Stage Hydraulically Fractured Horizontal Well That Penetrates an Unconventional Naturally Fractured Reservoir 非常规天然裂缝性储层多段水力压裂水平井压降分析方法
Day 2 Thu, March 17, 2022 Pub Date : 2022-03-11 DOI: 10.2118/208926-ms
Alejandra Gutierrez Oseguera, R. Aguilera
{"title":"Method for Drawdown Analysis of a Multi-Stage Hydraulically Fractured Horizontal Well That Penetrates an Unconventional Naturally Fractured Reservoir","authors":"Alejandra Gutierrez Oseguera, R. Aguilera","doi":"10.2118/208926-ms","DOIUrl":"https://doi.org/10.2118/208926-ms","url":null,"abstract":"\u0000 This paper examines the pressure response of a horizontal well that penetrates an unconventional, naturally fractured reservoir. The response is quite surprising. The expectation of linear flow is shattered, and only radial flow is observed. The radial flow two parallel straight lines in a semilogarithmic crossplot of flow pressure vs. time are present but they are reversed, with the last straight line showing smaller pressures as compared with the extrapolated first straight line.\u0000 Two different methods are used; the first one is a conventional approach for analyzing the first semilog straight line with a view to calculating flow capacity and permeability well as skin. The second approach involves a novel dual porosity model that permits calculating several fracture parameters of interest, and to the best of our knowledge has not been published previously in the petroleum engineering literature. In this paper, new equations with a semi-empirical component, are presented that allow matching the reversed real pressure drawdown data as well as the corresponding pressure derivatives.\u0000 The new model shows that fluid flow is dominated initially by the fractures as in the case of dual porosity conventional models. In the conventional model, flow pressure data deviate from the first straight line toward the right due to pressure support stemming from fluids that move from the matrix toward the fractures. Eventually, a pressure equilibrium is reached and a second straight line, parallel to the first one, is developed. However, in the case of the model presented in this paper the data deviates, not to the right of the first straight line, but down and below the first straight line. This pressure drop is interpreted to be the result of boundary-dominated flow. Next, a pressure equilibrium is reached between matrix and fractures, and the last line becomes parallel to the first straight line. It is shown that correct pressure and derivative matches permit estimating various parameter of interest such as size of the matrix blocks, number of fractures that intercept the well bore, storativity ratio omega, partitioning coefficient (the ratio between fracture and matrix porosity), matrix permeability, and the ratio of fracture to matrix hydraulic diffusivity.\u0000 The novelty of this study is the development of a new easy-to-use well testing model for matching an unconventional pressure response during drawdown of a horizontal well that penetrates an unconventional tight dual porosity reservoir. The new method is explained with a step-by-step example that uses real data from the giant unconventional Chicontepec paleochannel in Mexico and can be reproduced readily by the reader.","PeriodicalId":11077,"journal":{"name":"Day 2 Thu, March 17, 2022","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85401844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Experimental Investigation of Asphaltene Aggregation Under Carbon Dioxide Injection Flow in Ultra-Low-Permeability Pore Structure 超低渗孔隙结构中二氧化碳注入流作用下沥青质聚集的实验研究
Day 2 Thu, March 17, 2022 Pub Date : 2022-03-11 DOI: 10.2118/208950-ms
Mukhtar Elturki, Abdulmohsin Imqam
{"title":"An Experimental Investigation of Asphaltene Aggregation Under Carbon Dioxide Injection Flow in Ultra-Low-Permeability Pore Structure","authors":"Mukhtar Elturki, Abdulmohsin Imqam","doi":"10.2118/208950-ms","DOIUrl":"https://doi.org/10.2118/208950-ms","url":null,"abstract":"\u0000 One of the major problems during gas injection in unconventional reservoirs is asphaltene precipitation and deposition. Asphaltenes can reduce the pore throat in the reservoir and plug the surface and subsurface equipment during the production process, thus, result in oil production reduction with significant financial consequences. The impact of carbon dioxide (CO2) gas injection on asphaltene deposition in unconventional reservoirs still poorly investigated. This research investigates the impact of CO2 gas injection on asphaltene aggregation in ultra-low-permeability pore structures, mainly present in unconventional shale resources. First, the minimum miscibility pressure (MMP) of crude oil with CO2 was determined using the slim tube technique. Then, several CO2 injection pressures were selected to conduct the filtration experiments using a specially designed filtration apparatus. All pressures selected were below the MMP. Various sizes of filter paper membranes were used to study the effect of pore structure on asphaltene deposition. The results showed that asphaltene weight percent was increased by increasing the pressure and a significant asphaltene weight percentage was observed on smaller pore size structures of the filter membranes. The visualization tests revealed the process of asphaltene precipitation and deposition and showed that asphaltene particles and clusters were precipitated after one hour and fully deposited in the bottom of the test tube after 12 hours. High-resolution photos of filter paper membranes were presented using microscopy imaging and scanning electron microscopy (SEM) analysis; these photos highlighted the asphaltene particles inside the filter paper membranes and pore plugging was observed. The study's findings will contribute to a better understanding of the main factors influencing the stability of asphaltene particles in crude oil under immiscible CO2 injection pressure, particularly in nano pores, which are predominant in shale unconventional resources.","PeriodicalId":11077,"journal":{"name":"Day 2 Thu, March 17, 2022","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84824167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信