超低渗孔隙结构中二氧化碳注入流作用下沥青质聚集的实验研究

Mukhtar Elturki, Abdulmohsin Imqam
{"title":"超低渗孔隙结构中二氧化碳注入流作用下沥青质聚集的实验研究","authors":"Mukhtar Elturki, Abdulmohsin Imqam","doi":"10.2118/208950-ms","DOIUrl":null,"url":null,"abstract":"\n One of the major problems during gas injection in unconventional reservoirs is asphaltene precipitation and deposition. Asphaltenes can reduce the pore throat in the reservoir and plug the surface and subsurface equipment during the production process, thus, result in oil production reduction with significant financial consequences. The impact of carbon dioxide (CO2) gas injection on asphaltene deposition in unconventional reservoirs still poorly investigated. This research investigates the impact of CO2 gas injection on asphaltene aggregation in ultra-low-permeability pore structures, mainly present in unconventional shale resources. First, the minimum miscibility pressure (MMP) of crude oil with CO2 was determined using the slim tube technique. Then, several CO2 injection pressures were selected to conduct the filtration experiments using a specially designed filtration apparatus. All pressures selected were below the MMP. Various sizes of filter paper membranes were used to study the effect of pore structure on asphaltene deposition. The results showed that asphaltene weight percent was increased by increasing the pressure and a significant asphaltene weight percentage was observed on smaller pore size structures of the filter membranes. The visualization tests revealed the process of asphaltene precipitation and deposition and showed that asphaltene particles and clusters were precipitated after one hour and fully deposited in the bottom of the test tube after 12 hours. High-resolution photos of filter paper membranes were presented using microscopy imaging and scanning electron microscopy (SEM) analysis; these photos highlighted the asphaltene particles inside the filter paper membranes and pore plugging was observed. The study's findings will contribute to a better understanding of the main factors influencing the stability of asphaltene particles in crude oil under immiscible CO2 injection pressure, particularly in nano pores, which are predominant in shale unconventional resources.","PeriodicalId":11077,"journal":{"name":"Day 2 Thu, March 17, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Investigation of Asphaltene Aggregation Under Carbon Dioxide Injection Flow in Ultra-Low-Permeability Pore Structure\",\"authors\":\"Mukhtar Elturki, Abdulmohsin Imqam\",\"doi\":\"10.2118/208950-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the major problems during gas injection in unconventional reservoirs is asphaltene precipitation and deposition. Asphaltenes can reduce the pore throat in the reservoir and plug the surface and subsurface equipment during the production process, thus, result in oil production reduction with significant financial consequences. The impact of carbon dioxide (CO2) gas injection on asphaltene deposition in unconventional reservoirs still poorly investigated. This research investigates the impact of CO2 gas injection on asphaltene aggregation in ultra-low-permeability pore structures, mainly present in unconventional shale resources. First, the minimum miscibility pressure (MMP) of crude oil with CO2 was determined using the slim tube technique. Then, several CO2 injection pressures were selected to conduct the filtration experiments using a specially designed filtration apparatus. All pressures selected were below the MMP. Various sizes of filter paper membranes were used to study the effect of pore structure on asphaltene deposition. The results showed that asphaltene weight percent was increased by increasing the pressure and a significant asphaltene weight percentage was observed on smaller pore size structures of the filter membranes. The visualization tests revealed the process of asphaltene precipitation and deposition and showed that asphaltene particles and clusters were precipitated after one hour and fully deposited in the bottom of the test tube after 12 hours. High-resolution photos of filter paper membranes were presented using microscopy imaging and scanning electron microscopy (SEM) analysis; these photos highlighted the asphaltene particles inside the filter paper membranes and pore plugging was observed. The study's findings will contribute to a better understanding of the main factors influencing the stability of asphaltene particles in crude oil under immiscible CO2 injection pressure, particularly in nano pores, which are predominant in shale unconventional resources.\",\"PeriodicalId\":11077,\"journal\":{\"name\":\"Day 2 Thu, March 17, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Thu, March 17, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208950-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, March 17, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208950-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非常规油藏注气过程中的主要问题之一是沥青质的沉淀和沉积。在生产过程中,沥青质会降低储层的孔喉,堵塞地面和地下设备,从而导致石油产量下降,并带来严重的经济后果。在非常规油藏中,二氧化碳注气对沥青质沉积的影响尚不清楚。研究了CO2注气对超低渗透孔隙结构中沥青质聚集的影响,这些孔隙结构主要存在于非常规页岩资源中。首先,采用细管技术确定了原油与CO2的最小混相压力(MMP)。然后,选择不同的CO2注入压力,使用专门设计的过滤装置进行过滤实验。所有选择的压力都低于MMP。采用不同尺寸的滤纸膜,研究了孔隙结构对沥青质沉积的影响。结果表明,压力越大,沥青质质量百分比越高,孔径越小的过滤膜结构沥青质质量百分比越高。可视化试验揭示了沥青质沉淀和沉积的过程,结果表明,1小时后沥青质颗粒和团簇析出,12小时后沥青质完全沉积在试管底部。通过显微镜成像和扫描电镜(SEM)分析,获得了滤纸膜的高分辨率照片;这些照片突出显示了滤纸膜内的沥青质颗粒,并观察到孔隙堵塞。该研究结果将有助于更好地了解在非混相CO2注入压力下原油中沥青质颗粒稳定性的主要影响因素,特别是在页岩非常规资源中占主导地位的纳米孔隙中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Investigation of Asphaltene Aggregation Under Carbon Dioxide Injection Flow in Ultra-Low-Permeability Pore Structure
One of the major problems during gas injection in unconventional reservoirs is asphaltene precipitation and deposition. Asphaltenes can reduce the pore throat in the reservoir and plug the surface and subsurface equipment during the production process, thus, result in oil production reduction with significant financial consequences. The impact of carbon dioxide (CO2) gas injection on asphaltene deposition in unconventional reservoirs still poorly investigated. This research investigates the impact of CO2 gas injection on asphaltene aggregation in ultra-low-permeability pore structures, mainly present in unconventional shale resources. First, the minimum miscibility pressure (MMP) of crude oil with CO2 was determined using the slim tube technique. Then, several CO2 injection pressures were selected to conduct the filtration experiments using a specially designed filtration apparatus. All pressures selected were below the MMP. Various sizes of filter paper membranes were used to study the effect of pore structure on asphaltene deposition. The results showed that asphaltene weight percent was increased by increasing the pressure and a significant asphaltene weight percentage was observed on smaller pore size structures of the filter membranes. The visualization tests revealed the process of asphaltene precipitation and deposition and showed that asphaltene particles and clusters were precipitated after one hour and fully deposited in the bottom of the test tube after 12 hours. High-resolution photos of filter paper membranes were presented using microscopy imaging and scanning electron microscopy (SEM) analysis; these photos highlighted the asphaltene particles inside the filter paper membranes and pore plugging was observed. The study's findings will contribute to a better understanding of the main factors influencing the stability of asphaltene particles in crude oil under immiscible CO2 injection pressure, particularly in nano pores, which are predominant in shale unconventional resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信