Day 4 Wed, December 01, 2021最新文献

筛选
英文 中文
Thermal Effect on Formation Stability Due to Heterogeneity 非均质性对地层稳定性的热效应
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204663-ms
S. Batarseh, D. P. San Roman Alerigi, Abdullah Al Harith, Wisam J. Assiri
{"title":"Thermal Effect on Formation Stability Due to Heterogeneity","authors":"S. Batarseh, D. P. San Roman Alerigi, Abdullah Al Harith, Wisam J. Assiri","doi":"10.2118/204663-ms","DOIUrl":"https://doi.org/10.2118/204663-ms","url":null,"abstract":"\u0000 This study evaluates physical and chemical changes induced by high thermal gradients on the formation and their impact to the stability. The heat sources that effect the formation’s stability are varied, including drilling (due to drilling bit friction), perforation, electromagnetic heating (laser or microwave), and thermal recovery or stimulation (steam, resistive heating, combustion, microwave, etc.). This study uses an integrated approach to characterize rock heterogeneity and mapping heat propagation from different heat sources. The information obtained from the study is vital to accurately design and enhance well completion and stimulation\u0000 This is an integrated analysis approach combining different advanced characterization and visualization techniques to map heat propagation in the formation. Advanced statistical analysis is also used to determine the key parameters and build fundamental prediction algorithms. Characterization on the samples was performed before, during, and after the exposure to thermal sources; it comprised thin-section, high speed infrared thermography (IR), differential thermal analysis and thermogravimetric analyzer (DTA/TGA), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), uniaxial stress, and autoscan (provide hardness, composition, velocity, and spectral absorption). The results are integrated, and machine learning is used to derive a predictive algorithm of heat propagation and mapping in the formation with reference to the key formation variables and heterogeneity distribution.\u0000 Rock heterogeneity affects the rate and patterns of heat propagation into the formation. Within the rock sample, minerals, laminations, and cementations lead to a heterogeneous, and sometimes anisotropic, distribution of thermal properties (thermal conductivity, heat capacity, diffusivity, etc.). These properties are also affected by the rock structure (porosity, micro-cracks, and fractures) and saturation distribution. The results showed the impact of heat on the mechanical properties of the rocks are due to clays dehydration, mineral dissociations, and micro cracks. High speed thermal imaging provides a unique visualization of heat propagation in heterogeneous rocks. Statistical analysis identified key parameters and their impact on thermal propagation; the output was used to build a machine learning algorithm to predict heat distributions in core samples and near-wellbore.\u0000 Characterizing rock properties and understanding how heterogeneity modifies heat propagation in rocks enables the design of optimal completion and stimulation strategies. This paper discusses how advanced characterization and analysis, combined with novel algorithms, can improve this understanding, and unleash innovation and optimization. The data and information gathered are critical to develop numerical models for field-scale applications.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"194 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89755495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Safeguarding CO2 Storage in a Depleted Offshore Gas Field with Adaptive Approach of Monitoring, Measurement and Verification MMV 利用自适应监测、测量和验证MMV方法保护枯竭海上气田的CO2储存
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204590-ms
P. Tiwari, P. Chidambaram, A. I. Azahree, Dr. Rabindra Das, P. A. Patil, Zoann Low, P. Chandran, R. Tewari, M. A. Abdul Hamid, M. Yaakub
{"title":"Safeguarding CO2 Storage in a Depleted Offshore Gas Field with Adaptive Approach of Monitoring, Measurement and Verification MMV","authors":"P. Tiwari, P. Chidambaram, A. I. Azahree, Dr. Rabindra Das, P. A. Patil, Zoann Low, P. Chandran, R. Tewari, M. A. Abdul Hamid, M. Yaakub","doi":"10.2118/204590-ms","DOIUrl":"https://doi.org/10.2118/204590-ms","url":null,"abstract":"\u0000 CO2 sequestration is a process for eternity with a possibility of zero-degree failure. One of the key components of the CO2 Sequestration Project is to have a site-specific, risk-based and adaptive Monitoring, Measurement and Verification (MMV) plan. The storage site has been studied thoroughly and is understood to be inherently safe for CO2 sequestration. However, it is incumbent on operator to manage and minimize storage risks. MMV planning is critical along with geological site selection, transportation and storage process.\u0000 Geological evaluation study of the storage site suggests the containment capacity of identified large depleted gas reservoirs as well as long term conformance due to thick interval. The fault-seal analysis and reservoir integrity study contemplate long-term security of the CO2 storage. An integrated 3D reservoir dynamic simulation model coupled with geomechanical and geochemical models were performed. This helps in understanding storage capacity, trapping mechanisms, reservoir integrity, plume migration path, and injectivity. To demonstrate that CO2 plume migration can be mapped from the seismic, a 4D Seismic feasibility study was carried out using well and fluid data. Gassmann fluid substitution was performed in carbonate reservoir at well, and seismic response of several combination of fluid saturation scenarios on synthetic gathers were analyzed.\u0000 The CO2 dispersion study, which incorporate integration of subsurface, geomatic and metocean & environment data along with leakage character information, was carried out to understand the potential leakage pathway along existing wells and faults which enable to design a monitoring plan accordingly. The monitoring of wells & reservoir integrity, overburden integrity will be carried out by Fiber Optic System to be installed in injection wells. Significant difference in seismic amplitude observed at the reservoir top during 4D seismic feasibility study for varying CO2 saturation suggests that monitoring of CO2 plume migration from seismic is possible. CO2 plume front with as low as 25% saturation can be discriminated provided seismic data has high signal noise ratio (SNR).\u0000 3D DAS-VSP acquisition modeling results show that a subsurface coverage of approximately 3 km2 per well is achievable. Laboratory injectivity studies and three-way coupled modelling simulations established that three injection wells will be required to achieve the target injection rate. As planned injection wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume front. Hence, surface seismic acquisition will be an integral component of full field monitoring and time-lapsed evaluations for integrated MMV planning to monitor CO2 plume migration. The integrated MMV planning is designed to ensure that injected CO2 in the reservoir is intact and safely stored for hundreds of years after injection. Field specific MMV technologies for CO2 plume migration with p","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"35 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77961218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Experimental and Simulation Study of CO2 Sequestration in an Underground Formations; Impact on Geomechanical and Petrophysical Properties 地下地层CO2封存的实验与模拟研究对地质力学和岩石物理性质的影响
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204726-ms
Sobia Fatima, Hafiz Muhammad Azib Khan, Zeeshan Tariq, Mohammad Abdalla, M. Mahmoud
{"title":"An Experimental and Simulation Study of CO2 Sequestration in an Underground Formations; Impact on Geomechanical and Petrophysical Properties","authors":"Sobia Fatima, Hafiz Muhammad Azib Khan, Zeeshan Tariq, Mohammad Abdalla, M. Mahmoud","doi":"10.2118/204726-ms","DOIUrl":"https://doi.org/10.2118/204726-ms","url":null,"abstract":"\u0000 Carbon dioxide (CO2) sequestration is a technique to store CO2 into an underground formation. CO2 can cause a severe reaction with the underground formation and injection tubing inside the well. Successful CO2 storage into underground formations depends on many factors such as efficient sealing, no escaping from the storage, and minimum corrosion to injection tubing/casing. Therefore, proper planning involving thorough study and reaction kinetics of CO2 with the underground formation is indeed necessary for proper planning.\u0000 The main aim and objective of this study are to investigate the effect of CO2 storage with different cap rocks such as tight carbonate and shale under simulated reservoir conditions. The samples were stored for different times such as 10, 20, and 120 days. The objectives of the study were achieved by carrying out extensive laboratory experiments before and after sequestration. The laboratory experiments included were rock compressive and tensile strength tests, petrophysical tests, and rock mechanical tests. The laboratory results were later used to investigate the reaction kinetics study of CO2 with the underground formation using CMG simulation software. The effect of injection rate, the point of injection, purity of the injection fluid, reservoir heterogeneity, reservoir depth, and minimum miscibility pressure was analyzed.\u0000 In this simulation model, CO2 is injected for 25 years using CMG-GEM simulation software and then the fate of CO2 post injection is modeled for the next 225 years. The simulation results showed a notable effect on the mechanical strength and petrophysical parameters of the rock after sequestration, also the solubility of CO2 decreases with the increase in salinity and injection pressure. The results also showed that the storage of CO2 increases the petrophysical properties of porosity and permeability of the formation rock when the storage period is more than 20 days because of calcite precipitation and CO2 dissolution. A storage period of fewer than 20 days does not show any significant effect on the porosity and permeability of carbonate reservoir rock. A sensitivity analysis was carried out which showed that the rate of CO2 sequestration is sensitive to the mineral-water reaction kinetic constants. The sensitivity of CO2 sequestration to the rate constants decreases in magnitude respectively for different clay minerals.\u0000 The new simulation model considers the effect of reaction kinetics and geomechanical parameters. The new model is capable of predicting the compatibility of CO2 sequestration for a particular field for a particular time.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"15 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80425217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Coupled Effect of Imbibition Capillary Pressure and Matrix-Fracture Transfer on Oil Recovery from Dual-Permeability Reservoirs 自吸毛细管压力与基质-裂缝传递对双渗透油藏采收率的耦合影响
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204819-ms
A. Alramadhan, Y. Cinar, A. Hussain, Nader Y. BuKhamseen
{"title":"Coupled Effect of Imbibition Capillary Pressure and Matrix-Fracture Transfer on Oil Recovery from Dual-Permeability Reservoirs","authors":"A. Alramadhan, Y. Cinar, A. Hussain, Nader Y. BuKhamseen","doi":"10.2118/204819-ms","DOIUrl":"https://doi.org/10.2118/204819-ms","url":null,"abstract":"\u0000 This paper presents a numerical study to examine how the interplay between the matrix imbibition capillary pressure (Pci) and matrix-fracture transfer affects oil recovery from naturally-fractured reservoirs under waterflooding. We use a dual-porosity, dual-permeability (DPDP) finite difference simulator to investigate the impact of uncertainties in Pci on the waterflood recovery behavior and matrix-fracture transfer. A comprehensive assessment of the factors that control the matrix-fracture transfer, namely Pci, gravity forces, shape factor and fracture-matrix permeabilities is presented. We examine how the use of Pci curves in reservoir simulation can affect the recovery assessment. We present two conceptual scenarios to demonstrate the impact of spontaneous and forced imbibition on the flood-front movement, waterflood recovery processes, and ultimate recovery in the DPDP reservoir systems of varying reservoir quality.\u0000 The results demonstrate that the inclusion of Pci in reservoir simulation delays the breakthrough time due to a higher displacement efficiency. The study reveals that the matrix-fracture transfer is mainly controlled by the fracture surface area, fracture permeability, shape factor, and the uncertainty in Pci. We underline a discrepancy among various shape factors proposed in the literature due to three main factors: (1) the variations in matrix-block geometries considered, (2) how the physics of imbibition forces that control the multiphase fluid transfer is captured, and (3) how the assumption of pseudo steady-state flow is addressed.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80064449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated CO2 Modeling Studies to Assess CO2 Sequestration Prospect in a Depleted Carbonate Gas Reservoir, Malaysia 综合CO2模型研究评估枯竭碳酸盐岩气藏CO2封存前景,马来西亚
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204810-ms
M. A. A Jalil, Sharidah M Amin, S. S. M Ali
{"title":"Integrated CO2 Modeling Studies to Assess CO2 Sequestration Prospect in a Depleted Carbonate Gas Reservoir, Malaysia","authors":"M. A. A Jalil, Sharidah M Amin, S. S. M Ali","doi":"10.2118/204810-ms","DOIUrl":"https://doi.org/10.2118/204810-ms","url":null,"abstract":"\u0000 This paper presented an integrated CO2 injection and sequestration modelling study performed on a depleted carbonate gas reservoir, which has been identified as one of potential CO2 sequestration site candidate in conjunction with nearby high CO2 gas fields development and commercialization effort to monetize the fields. 3D compositional modelling, geomechanical and geochemical assessment were conducted to strategize optimum subsurface CO2 injection and sequestration development concept for project execution.\u0000 Available history matched black oil simulation model was converted into compositional model. Sensitivity analyses on optimum injection rate, number and types of injectors, solubility of CO2 in water, injection locations and impact of hysteresis to plume distribution were investigated. Different types of CO2 trapping mechanisms including hydrodynamic, residual/capillary, solubility and mineral trapping were studied in detailed. Coupled modelling study was performed on base case scenario to assess geomechnical and geochemical risks associated with CO2 injection and sequestration process before-, during- and post- CO2 injection operation to provide assurance for a safe and long-term CO2 sequestration in the field.\u0000 Available history matched black oil model was successfully converted into compositional model, in which CO2 is treated and can be tracked as a separate component in the reservoir throughout the production and injection processes. Integrating all the results obtained from sensitivities analyses, the proposed optimum subsurface CO2 injection and sequestration development concept for the field is to inject up to 400 MMscf/D of CO2 rate via four injectors. CO2 injection rate is forecasted to sustain more than 3 years from injection start date before declining with time. In terms of CO2 storage capacity, constraining injection pressure up to initial reservoir pressure, maximum CO2 storage capacity is estimated ~65 Million tonnes. Nevertheless, considering maximum allowable CO2 injection pressure estimated from coupled modelling study and operational safety factor, the field is capable to accommodate a total of ~77 Million tonnes of CO2, whereby 73% of total CO2 injected will exists in mobile phase and trapped underneath caprock whilst the other 24% and 3% will be trapped as residual/capillary and dissolved in water respectively. Changes of minerals and porosity were observed from 3D geochemical modelling, however, changes are negligible due to the fact that geochemical reaction is a very slow process.\u0000 This paper highlights and shares simulation results obtained from CO2 injection and sequestration studies performed on 3D compositional model to generate an optimum subsurface CO2 injection and sequestration development concept for project execution in future. Integration with geomechanical and geochemical modelling studies are crucial to assess site's capability to accommodate CO2 within the geological formation and provide assurance fo","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78699692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Modeling of Unconventional Well Performance with Millions of Natural and Hydraulic Fractures Using Embedded Discrete Fracture Model EDFM 利用嵌入式离散裂缝模型EDFM高效建模数百万条天然和水力裂缝的非常规井动态
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204548-ms
Wei Yu, Anuj Gupta, R. Vaidya, K. Sepehrnoori
{"title":"Efficient Modeling of Unconventional Well Performance with Millions of Natural and Hydraulic Fractures Using Embedded Discrete Fracture Model EDFM","authors":"Wei Yu, Anuj Gupta, R. Vaidya, K. Sepehrnoori","doi":"10.2118/204548-ms","DOIUrl":"https://doi.org/10.2118/204548-ms","url":null,"abstract":"The complexity of dynamic modeling for naturally fractured reservoirs has increased in recent years to incorporate more data and physics, as well as to handle advanced completion designs and development scenarios. While these complex models can provide more insight to difficult problems, they come with higher computational costs. Such a limitation prohibits an asset team from working with a large number of well/fracture scenarios that correctly represent geological uncertainty. This study presents a powerful non-intrusive Embedded Discrete Fracture Model (EDFM) method to efficiently handle millions of natural and hydraulic fractures with hundreds of horizontal wells, which has never been modeled in the literature. Specifically, we built a 3D geological model using a black oil reservoir simulator with 100 square miles in the horizontal area and 11 layers of 165 ft thickness. The total number of matrix cells without considering fractures is over 3 million. In total, 400 horizontal wells with well length of 6000 ft were modeled in two target layers. Each layer contains 200 wells. Each well has 112 hydraulic fractures with cluster spacing of 50 ft. The total number of hydraulic fractures is 44,800. In addition, we generated three cases with 10K, 100K and 1 million 3D natural fractures with dip angle from 70 to 90 degrees. For the case with 1 million natural fractures, the total number of cells is over 42 million. Well performance for the field example, with and without natural fractures, was investigated. This work adds significant value to the well and fracture spacing optimization process during field development planning. The non-intrusive EDFM method has been proven to be an efficient fracture modeling tool for simulating million-level complex hydraulic/natural fractures, which significantly improves accuracy and reduces computational time.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83257728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design of a Dislocation Well Pattern and Drilling of Shallow 3D Cluster Horizontal Wells for Development of Ultra Heavy Oil 超稠油开发位错井网设计及浅层三维簇状水平井钻井
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204595-ms
Peng Chen, Guobin Yang, Lei Chen, Guobin Zhang, Haochen Han, Chen Chen
{"title":"Design of a Dislocation Well Pattern and Drilling of Shallow 3D Cluster Horizontal Wells for Development of Ultra Heavy Oil","authors":"Peng Chen, Guobin Yang, Lei Chen, Guobin Zhang, Haochen Han, Chen Chen","doi":"10.2118/204595-ms","DOIUrl":"https://doi.org/10.2118/204595-ms","url":null,"abstract":"\u0000 The Junin block in Venezuela was known as an ultra heavy oil belt reserved in extra shallow layers (950ft-1,380ft) with unconsolidated formations. A cluster wells platform drilling was required for the Field Development Program (FDP). Optimisation of the well pattern and drilling of shallow 3D cluster horizontal wells for development of ultra heavy oil are presented in this paper.\u0000 A well pattern of hand-shape dislocation was forwarded to enhance effective recovery of heavy oil in diamond blind area. Optimisation of the casing programs and control of the well trajectories as well as other key performance drilling were designed. A strict anti-collision barrier design and operation steps were worked out to assure the drilling safety. The loss-resistance, anti-collapse, stick-stuck proof, lubrication and reservoir protection were put into considerations for the drilling fluid design. Recovery of heavy oil was enhanced by means of electrical heating system.\u0000 Drilling challenges such as shallow target zones, big build-up rate, long horizontal sections, great friction drag and torques, and well trajectories control were experienced and settled. Especially the puzzles of well trajectories control in unconsolidated formations, great friction drag and torques of strings in large displacement long horizontal sections for subsequent operations, and the unstable wellbore were tackled. A typical well data revealed that the horizontal displacement vs. TVD ratio was as high as up to 4.5. The setting depth of surface casing and the determination of KOP were critical to the horizontal wells with large displacement in shallow layers. Pressurized combined drilling and casing-running by means of top drive overcame the drag and torque and achieved planned TD and casing setting depth. The use of electrical wireline heating rod increased the temperatures in and close to the wellbore, and compensated the radius heat loss and avoided viscosity increase of heavy oil so that the output was maintained and improved.\u0000 It was the first time for successful drilling of shallow 3D cluster horizontal wells with ratio of horizontal displacement vs. TVD over 3.5 in heavy oil belt of Venezuela. The innovative palm-shape dislocation of the well pattern design satisfied the demand of reservoir development and contributed to good production gain of heavy oil.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83430925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A New Approach for Building Composite Cores for Corefloods in Complex Carbonate Rocks 复杂碳酸盐岩岩心驱替复合岩心构建新途径
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204655-ms
Y. Cinar, Ahmed Zayer, Naseem Dawood, D. Krinis
{"title":"A New Approach for Building Composite Cores for Corefloods in Complex Carbonate Rocks","authors":"Y. Cinar, Ahmed Zayer, Naseem Dawood, D. Krinis","doi":"10.2118/204655-ms","DOIUrl":"https://doi.org/10.2118/204655-ms","url":null,"abstract":"\u0000 Carbonate reservoir rocks are composed of complex pore structures and networks, forming a wide range of sedimentary facies. Considering this complexity, we present a novel approach for a better selection of coreflood composites. In this approach, reservoir plugs undergo a thorough filtration process by completing several lab tests before they get classified into reservoir rock types. Those tests include conventional core analysis (CCA), liquid permeability, plug computed tomography (CT), nuclear magnetic resonance (NMR), end-trim mercury injection capillary pressure (MICP), X-ray diffraction (XRD), thin-section analysis (TS), scanning electron microscopy (SEM), and drainage capillary pressure (Pc). We recommend starting with a large pool of plugs and narrowing down the selection as they complete different stages of the screening process. The CT scans help to exclude plugs exhibiting composite-like behavior or containing vugs and fractures that potentially influence coreflood results. After that, the plugs are categorized into separate groups representing the available reservoir rock types. Then, we look into each rock type and determine whether the selected plugs share similar pore-structures, rock texture, and mineral content. The end-trim MICP is usually helpful in clustering plugs having similar pore-throat size distributions. Nevertheless, it also poses a challenge because it may not represent the whole plug, especially for heterogeneous carbonates. In such a case, we recommend harnessing the NMR capabilities to verify the pore-size distribution. After pore-size distribution verification, plugs are further screened for textural and mineral similarity using the petrographic data (XRD, TS, and SEM). Finally, we evaluate the similarity of brine permeability (Kb), irreducible water saturation (Swir) from Pc, and effective oil permeability data at Swir (Koe, after wettability restoration for unpreserved plugs) before finalizing the composite selection.\u0000 The paper demonstrates significant aspects of applying the proposed approach to carbonate reservoir rock samples. It integrates geology, petrophysics, and reservoir engineering elements when deciding the best possible composite for coreflood experiments. By practicing this workflow, we also observe considerable differences in rock types depending on the data source, suggesting that careful use of end-trim data for carbonates is advisable compared to more representative full-plug MICP and NMR test results. In addition, we generally observe that Kb and Koe are usually lower than the Klinkenberg permeability with a varying degree that is plug-specific, highlighting the benefit of incorporating these measurements as additional criteria in coreflood composite selection for carbonate reservoirs.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87005610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research of Phase Behavior in Natural Gas Drive Process and Its Application in T_D Reservoir with HTHP 高温高压天然气驱气过程相行为研究及其在T_D油藏中的应用
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204676-ms
T. Jiang, Daiyu Zhou, Liming Lian, Yiming Wu, Zangyuan Wu, Kun Fan, Wei Zhou, W. Bian, Guangqiang Shao, J. Fan, Hong-Yang Yu, Xiyu Kuang, Lin Wu, Lan Huang, Xianan Deng, Kaiyu Wang
{"title":"Research of Phase Behavior in Natural Gas Drive Process and Its Application in T_D Reservoir with HTHP","authors":"T. Jiang, Daiyu Zhou, Liming Lian, Yiming Wu, Zangyuan Wu, Kun Fan, Wei Zhou, W. Bian, Guangqiang Shao, J. Fan, Hong-Yang Yu, Xiyu Kuang, Lin Wu, Lan Huang, Xianan Deng, Kaiyu Wang","doi":"10.2118/204676-ms","DOIUrl":"https://doi.org/10.2118/204676-ms","url":null,"abstract":"\u0000 Different from other gas drive processes, phase behavior performs more significant roles in natural gas drive process. The main reason is that more severe mass transfer effect and similar phase solubility effect have been caused by multicomponent interaction. This paper provides a series of methods to study the phase behavior in natural gas drive process, aiming to reveal further mechanism and give technical supports to the on-site practice in T_D Reservoir with HTHP.\u0000 Four key parameters of natural gas drive have been determined. Firstly, laboratory compounding method has been improved to obtain real components of formation fluids and actual injected gas at formation condition (140°C, 45MPa). Secondly, 19 sets of slim tube test has been carried to determine MMP (minimum miscible pressure) and the injected gas components ensuring miscibility. Thirdly, swelling test and laser method have been used to separately obtain the viscosity reduction degree and solid deposition effects. Finally, multiple contact test has been carried to describe the miscibility behavior. All the above have been applied in T_D Reservoir.\u0000 Conclusions could be drawn from the results obtained by the methods above. Firstly, swelling capacity of crude oil could be enhanced by natural gas for the formation volume factor of crude oil in T_D Reservoir increased by 57% and the viscosity decreased by 83% after natural gas injection. Secondly, MMP of dry gas and crude oil in T_D Reservoir is 43.5MPa with a miscible displacement efficiency above 90% (>30% compared with immiscible displacement efficiency), and the content of N2+C1 should be controlled over 88%. Thirdly, results of 5 levels contact experiments shows that miscibility behavior of natural gas and oil from T_D Reservoir performs an evaporative-condensate composite miscible process in which the condensate miscible process takes the lead. Finally, obvious solid point has not been observed in natural gas drive process of crude oil from T_D Reservoir at the formation temperature, and the effect of solid deposition on the fluid flow in formation could be ignored because of trace amount of solid solution (<1mg/ml) and minute formation permeability damage (<8%). The achievements above have been applied in T_D Reservoir as one of the important technical means supporting over 350,000 tons increased production by natural gas drive.\u0000 A systematic methods have been reorganized to research the phase behavior in natural gas drive process and half of these methods mentioned above get partially improvement. These physical simulation experiments have covered most mainly processes and the key parameters in reservoirs with HTHP and natural gas drive, including mass transfer, viscosity, expansion, volume coefficient, MMP, miscibility behavior and solid deposition. Every experiment gives a quantitative analysis which possesses satisfied practicability in field application.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79119441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Troubleshooting Gas Compression Systems Using Data Analysis 使用数据分析排除气体压缩系统
Day 4 Wed, December 01, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204808-ms
A. Al-Aiderous
{"title":"Troubleshooting Gas Compression Systems Using Data Analysis","authors":"A. Al-Aiderous","doi":"10.2118/204808-ms","DOIUrl":"https://doi.org/10.2118/204808-ms","url":null,"abstract":"\u0000 The objective of this paper is to showcase the successful and innovative troubleshooting data analysis techniques in one of the gas compression systems in upstream gas oil separation plants (GOSP-A). The gas compression system using gas compressors, dry gas seal systems and due point controls is used in almost all of upstream operation.\u0000 These proven data analysis techniques were used to tackle major and chronic issues associated with gas compression system operation that lead to excessive flaring, mechanical seal failures, solidification, hydrate formation and off-specification products. Dry Gas mechanical seals are an important key element in gas compression and its lifetime represents a concern to the operation personnel. Most gas compression systems have a mechanical seal lifetime of 2 years which in some cases limit production, increase the potential of unnecessary flaring and increase OPEX significantly. In addition, solidification due to constant liquid carry over result in a wide range of undesirable results such as blockages that constrain production rates and result in safety concerns.\u0000 In this paper, comprehensive data analysis of the potential root causes that aggravate undesired premature mechanical seal failure, material solidification, equipment damage and off-specification gas products will be discussed along with solutions to minimize expected impact. For example, improper product specification in some applications have been found to promote seal failures, corrosion, solidification and incur additional flaring which is both costly and environmentally undesirable. In addition, after extensive analysis improper operation practices during compressor startups, steady state operation and gas conditioning have been linked with premature compressor failures, product off spec and safety device failures.\u0000 The field trial proved the effectiveness of the proposed innovative troubleshooting data analysis techniques in reinstating the gas compression unit in GOSP-A to its recommended design conditions, eliminated compressors and mechanical seal failures and avoided the off-specification products at the lowest operating cost. This innovative technique was based on deep and extensive process data analysis, evaluating operating and design data, reviewing international standards, benchmarking against other facilities, process simulation using Hysys, and finally the actual field trial.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81866951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信