Day 3 Thu, September 23, 2021最新文献

筛选
英文 中文
Successful Intervention of Coiled Tubing Rugged Tool with Real-Time Telemetry System in Saudi Arabia First Multistage Fracturing Completion with Sand Control System 连续油管坚固工具与实时遥测系统在沙特阿拉伯成功修井,首次采用防砂系统进行多级压裂完井
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/205943-ms
Ahmed. N. Alduaij, Z. Al-Bensaad, D. Ahmed, M. Noor, Nabil Batita, AbdulMuqtadir Khan
{"title":"Successful Intervention of Coiled Tubing Rugged Tool with Real-Time Telemetry System in Saudi Arabia First Multistage Fracturing Completion with Sand Control System","authors":"Ahmed. N. Alduaij, Z. Al-Bensaad, D. Ahmed, M. Noor, Nabil Batita, AbdulMuqtadir Khan","doi":"10.2118/205943-ms","DOIUrl":"https://doi.org/10.2118/205943-ms","url":null,"abstract":"\u0000 An openhole multistage completion required selective fracture stimulation, flow control, and sand control in each zone. An openhole multistage completion was designed by combining a production sleeve integrated with sand screens and inflow control devices and a fracture sleeve with high open flow port. The system was designed to use a ball drop to isolate the bottom intervals while fracturing upper intervals. After fracture stimulation, the fracture seat/ball needed to be milled. The production sleeve were designed to be shifted to the open position and the fracturing sleeve to the closed position through mechanical shifting tool to put the well on production. The fracturing sleeve and the production sleeve were located close to each other and a successful shifting operation needed an appropriate shifting tool, with a real-time downhole telemetry system that met the temperature limitations while providing accurate depth control, differential pressure readings, and axial force (tension and compression) measurements.\u0000 Hydraulic-pressure-activated shifting tools were used to manipulate the sleeves. A coiled tubing (CT) rugged downhole tool with real-time telemetry was used to run the shifting tools. Yard tests were conducted to identify the optimum rates and pressures to actuate the hydraulically activated shifting tools and study their behavior. The expansion of the fracturing sleeve shifting tool keys initiated at 1.6 bbl/min (400 psi) and the keys were fully expanded at 1.8 bbl/min (600 psi), whereas the expansion of production sleeve shifting tool keys initiated at 0.3 bbl/min (700 psi), and the keys were fully expanded at 0.4 bbl/min (900 psi). During the design and planning of the shifting operation, simulations were conducted, and surface and downhole tools were selected carefully to ensure the CT could provide enough downhole upward force (5,000 to 6,000 lbf) to close the fracture ports and 2,000 to 4,000 lbf to open production sleeves.\u0000 Following the fracturing operation, the first CT run aimed to mill fracture seats/balls to clear the path for the subsequent shifting operation. In the second CT run, all the fracturing sleeves were shifted to the closed position while production sleeves were shifted to the open position. The CT rugged downhole tool proved critical for depth correlation and accurate placement of the shifting tools. The real-time downhole acquisition of differential pressure across the toolstring also allowed operating the shifting tools under optimum conditions, while downhole force readings of tension and compression confirmed the shifting of completion accessories.\u0000 Two fracturing sleeves were shifted to the closed position at 2.4 bbl/min and 700-psi downhole differential pressure, with the downhole weights of 700 lb and 1,000 lbf. Three production sleeves were shifted to open position at 0.6 bbl/min and 1,200-psi downhole differential pressure, and the maximum surface and downhole weights recorded were 73,000 lb and 19,","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80717323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-State Gyro Technology Allows Safe And Reliable Real-Time Remote Operations 固态陀螺技术允许安全可靠的实时远程操作
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/205870-ms
Adrian G. Ledroz, Barry Smart, Navin. Maharaj
{"title":"Solid-State Gyro Technology Allows Safe And Reliable Real-Time Remote Operations","authors":"Adrian G. Ledroz, Barry Smart, Navin. Maharaj","doi":"10.2118/205870-ms","DOIUrl":"https://doi.org/10.2118/205870-ms","url":null,"abstract":"\u0000 There are several reasons for obtaining gyroscopic surveys in directional wells. A gyro measurement provides reliable data when magnetic measurements are affected by interference from nearby wells; it can significantly reduce the positional uncertainty and provides redundancy data and gross error checks on MWD surveys. However, the complexity and extent of the necessary testing and handling of the tools have prevented widespread adoption, and gyro services have remained limited to \"must-have\" scenarios. The benefits of solid-state technology and new developments in communication capabilities are gradually changing the way of thinking related to wellbore positioning.\u0000 The first gyro while drilling tools were introduced in the early 2000s and were based on spinning mass gyro technology. These gyros can be very accurate with low noise levels and drift; however, they are fragile, built with moving parts, and susceptible to calibration shifts. Extensive pre-job testing, validation during job execution and post-job analysis are required to obtain reliable directional survey data. Solid-state gyros have reached the same, or even better, levels of noise and drift without the fragility of their spinning mass counterpart.\u0000 With different degrees of complexity and coverage, remote operations have been used for many years in the oilfield. Still, the adoption of monitoring gyro services with no personnel at the rig-site has been minimal due to the described complexity of the system and the small volume of jobs that prevented investment and the development of the necessary processes. Solid-state gyro technology addresses these challenges\u0000 More than 30 gyro-while-drilling jobs have successfully run remotely. The changes in operational procedures forced by the Covid-19 pandemic accelerated the demand for uncrewed operations, and solid-state gyro technology has shown high reliability with zero non-productive time due to tool failures or shifts in the calibration. This new way of working also results in a significant reduction in the environmental impact of the operations as all travel related to personnel and equipment has been reduced and battery life extended by up to 10.\u0000 Several scenarios related to wellbore positioning and directional drilling greatly benefit by having a gyro in the BHA. The gyro technology and the workflow described in this paper show how this can be done reliably, maintaining the quality of the survey data and reducing the environmental impact.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89605479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Methods for Top-Down Methane Emission Measurements of Oil and Gas Facilities in an Offshore Environment Using a Miniature Methane Spectrometer and Long-Endurance UAS 基于微型甲烷光谱仪和长航时无人机的海上油气设施自上而下甲烷排放测量方法的发展
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/206181-ms
Brendan Smith, Stuart Buckingham, Daniel F. Touzel, A. Corbett, Charles Tavner
{"title":"Development of Methods for Top-Down Methane Emission Measurements of Oil and Gas Facilities in an Offshore Environment Using a Miniature Methane Spectrometer and Long-Endurance UAS","authors":"Brendan Smith, Stuart Buckingham, Daniel F. Touzel, A. Corbett, Charles Tavner","doi":"10.2118/206181-ms","DOIUrl":"https://doi.org/10.2118/206181-ms","url":null,"abstract":"\u0000 With atmospheric methane concentrations rising, spurring increased social concern, there is a renewed focus in the oil and gas industry on methane emission monitoring and control. In 2019, a methane emission survey at a bp asset west of Shetland was conducted using a closed-cavity methane spectrometer mounted onboard a long-endurance fixed-wing unmanned aerial vehicle (UAV). This flight represents the first methane emissions survey of an offshore facility with a miniature methane spectrometer onboard a UAV with subsequent flights performed. The campaign entailed gathering high-density methane concentration data in a cylindrical flight pattern that circumnavigated the facility in close proximity. A small laser spectrometer was modified from an open-cavity system to a closed-cavity onboard the aircraft and yielded in-flight detection limits (3s) of 1065ppb methane above background for the 2019/2020 sensor version and 150ppb for the 2021 sensor versions. Through simulation, the sensors minimum detection limits in mass flow rate were determined to be 50 kg/h for the 2019/2020 campaign and 2.5kg/h for the 2021 campaigns; translating to an obtainable measurement for 23% and 82% of assets reporting higher than 1 kg/h according to the 2019 EEMS dataset, respectively. To operationalize the approach, a simulation tool for flight planning was developed utilizing a gaussian plume model and a scaled coefficient of variation to invoke expected methane concentration fluctuations at short time intervals. The simulation is additionally used for creation of synthetic datasets to test and validate algorithm development. Two methods were developed to calculate offshore facility level emission rates from the geolocated methane concentration data acquired during the emission surveys. Furthermore, a gaussian plume simulator was developed to predict plume behavior and aid in error analysis. These methods are under evaluation, but all allow for the rapid processing (<24h) of results upon landing the aircraft. Additional flights were conducted in 2020 and 2021 with bp and several UK North Sea Operators through Net Zero Technology Centre (NZTC) funded project, resulting in a total of 18 methane emission survey flights to 11 offshore assets between 2019 and 2021. The 2019 flight, and subsequent 2020/21 flights, demonstrated the potential of the technology to derive facility level emission rates to verify industry emission performance and data.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89671921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Using Particle Swarm Optimization to Compute Hundreds of Possible Directional Paths to Get Back/Stay in the Drilling Window 使用粒子群优化计算数百种可能的方向路径,以返回/停留在钻井窗口
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/206170-ms
D. C. Braga, M. Kamyab, D. Joshi, Brian Harclerode, C. Cheatham
{"title":"Using Particle Swarm Optimization to Compute Hundreds of Possible Directional Paths to Get Back/Stay in the Drilling Window","authors":"D. C. Braga, M. Kamyab, D. Joshi, Brian Harclerode, C. Cheatham","doi":"10.2118/206170-ms","DOIUrl":"https://doi.org/10.2118/206170-ms","url":null,"abstract":"\u0000 One of the responsibilities of a directional driller (DD) is the computation of the current bit position given the last survey station measurement, and with that information calculate the path back to plan if directional correction is needed. Having only a few minutes during a drilling connection to perform these calculations, the DD is limited to compute only a handful of possible paths that will be presented to the Drilling Engineer/Company Man. With this information, the Company Man will decide which path to follow. The present work aims to develop a computer algorithm that replicates the field knowledge of DDs but can compute hundreds of paths in less than one minute. In addition, since the objective of the trajectory correction may differ, the algorithm also can optimize for one of three goals: maximum rate of penetration (ROP), minimum tortuosity in the path, or maximum footage in the drilling target window. The paper presents examples of four different path recommendations in the lateral portion of a horizontal well. The results show the optimum recommended paths for the same position for a specific optimization goal. Finally, a comparison between the running time and number of paths computed is presented. All results were obtained during the validation tests of the algorithm.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79563159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Learnings from Building a Vendor Agnostic Automated Directional Drilling System 建立与供应商无关的自动定向钻井系统的经验
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/205864-ms
Titto Thomas Philip, S. Ziatdinov
{"title":"Learnings from Building a Vendor Agnostic Automated Directional Drilling System","authors":"Titto Thomas Philip, S. Ziatdinov","doi":"10.2118/205864-ms","DOIUrl":"https://doi.org/10.2118/205864-ms","url":null,"abstract":"\u0000 The post COVID-19 era will undoubtedly present paradigm shifts in operational planning and execution and advanced automation will become an important factor. However, drilling automation without directional drilling (Cayeux 2020) capability will exclude the use of automation in a vast number of fields where precise placement of the wellbore has shifted from a luxury to a necessity. This is important in unconventional plays where automation can make a step change in operational outcomes (Chmela 2020). However, most efforts in automating directional drilling are using bespoke rigs (Slagmulder 2016) and bespoke bottom hole assembly (BHA) that limit operational options. The goal is in designing systems that enable directional drilling automation (Chatar 2018) with existing BHAs.\u0000 This paper will look at three challenges that were identified and overcome to deploy a vendor agnostic system for automating the directional drilling (DD) process. The three challenges identified here are as follows:Using any mud motor including low-cost motors in a closed loopIntegration with an existing measurement and logging while drilling (MLWD) systemAbility to roll out automation systems on any operations with existing rigs\u0000 The system is a modification of an operator’s autonomous drilling system (Rassenfoss 2011), designed to use existing rigs, BHAs and have minimum footprint on the rigs for operational use. The system will have a dedicated connection to the rig’s programmable logic controller (PLC) via common industrial protocols including Modbus, EthernetIP or Profinet, a physical connection the MLWD receiver and a brain box with a cloud connection to aggregate, process data and send commands to the rig PLC to execute directional commands.\u0000 A vendor agnostic system will increase adoption of automated technologies and further drive improvements in operational and business performance.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"139 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77463790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petroleum Energy Engineering Education Reform: Flipping the Curriculum 石油能源工程教育改革:课程翻转
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/206305-ms
Robello Samuel
{"title":"Petroleum Energy Engineering Education Reform: Flipping the Curriculum","authors":"Robello Samuel","doi":"10.2118/206305-ms","DOIUrl":"https://doi.org/10.2118/206305-ms","url":null,"abstract":"\u0000 The syllabus getting outdated, classroom attendance getting less importance, fast advancements of technology and changing workforce, and demography require us to rethink and re-examine the core curricula being taught at petroleum schools. The changing landscape like clean energy and carbon neutral delivery are adding pressure to re-examine the subjects taught in the classroom so that the long-term sustainability is established. So, acquiring interdisciplinary skills is crucial with the reformed curricula.\u0000 The questions to be addressed include: \"What is the fundamental problem in the present petroleum education?,\" \"Is there any problem with the present theoretical framework?,\" \"Is the petroleum education aligned with the latest developments such as edge devices, sensors, machine learning and artificial intelligence?,\" \"Is there an academia-industry-regulatory agencies tighter participation?,\" and \"What are the structural changes needed like rebranding as energy engineering?.\" The paper addresses these questions by proposing a new approach to petroleum engineering education by way of a changed energy engineering program, which involves fundamentals of engineering, sciences, and technologies that culminates in the development of experiential learning on cyber-physical systems.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85731553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Experience of Using Continuous Production Surveillance Techniques in Multilateral Wells 分支井连续生产监测技术应用经验
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/205908-ms
Nadir Husein, Vishwajit Upadhye, Igor Novikov, A. Drobot, V. Bolshakov, A. Buyanov, Vladimir Alekseevich Doronin
{"title":"Experience of Using Continuous Production Surveillance Techniques in Multilateral Wells","authors":"Nadir Husein, Vishwajit Upadhye, Igor Novikov, A. Drobot, V. Bolshakov, A. Buyanov, Vladimir Alekseevich Doronin","doi":"10.2118/205908-ms","DOIUrl":"https://doi.org/10.2118/205908-ms","url":null,"abstract":"\u0000 This paper deals with the case of using the production surveillance inflow tracer-based method in one of multi-lateral wells located in West Siberia.\u0000 Tracer systems were placed in the well during the well construction by horizontal side tracking, and multi-stage hydraulic fracturing (MSHF) was performed, with the parent borehole remaining in operation. This technology allows developing the reservoir drainage area with a lateral hole and bringing the oil reserves remaining in the parent borehole into production, which results in an increased well productivity and improved oil recovery rate.\u0000 Tracer systems are placed into the parent borehole within a downhole sub installed into the well completion. Polymer-coated proppant pack was injected during multi-stage hydraulic fracturing to deliver the tracers to the side track lateral.\u0000 Dynamic production profiling was done to aid into more efficient development of complex and heterogeneous reservoirs and improve of the productive reservoir sweep ratio during the construction of multilateral wells, which enabled us to address several key problems:\u0000 Providing tools for waterflood diagnostics in multilateral wells and finding an easy water shut- off method for a certain interval Assessing the efficiency of multi-stage hydraulic fracturing and elaborating the optimal treatment design Selecting the optimal mode of the multilateral well operation to prevent premature flooding in one or more laterals Evaluating whether well construction was performed efficiently, and a higher production was achieved by side tracking.\u0000 Currently, the proposed first-of-its-kind solution enables the operator to obtain a set of data that can help not only significantly improve the wells productivity and increase the oil recovery rate, but also lead to a considerable economic savings in capital expenditure.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77586006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Revolutionary Approach to Meeting Technological Challenges 迎接技术挑战的革命性方法
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/206210-ms
Yu. D. Maksimov, M. Khasanov, Aleksander Blyablyas, S. Vershinin, E. Ognev, R. Starostenko
{"title":"A Revolutionary Approach to Meeting Technological Challenges","authors":"Yu. D. Maksimov, M. Khasanov, Aleksander Blyablyas, S. Vershinin, E. Ognev, R. Starostenko","doi":"10.2118/206210-ms","DOIUrl":"https://doi.org/10.2118/206210-ms","url":null,"abstract":"\u0000 Gazprom Neft Science and Technology Center tailors various system engineering methods and other practices to the agenda of oil and gas industry. Resulting consistent approaches will produce a sort of work book enabling management of complex projects throughout the Upstream perimeter.\u0000 Value-Driven Engineering is a strategic approach to system engineering that optimizes several disciplines within a single model. For example, complex project components are broken down into simpler elements, making it easier to find responsible action officers. Planning is broken down into phases that make it easier to meet the assigned deadlines. It allows you to fragmentize the end product at the design and management phase with a view to edit the product's configuration during the work. Essentially, the VDE approach best resembles a step-by-step guide to putting together a construction made up of multiple elements: without this guide, building the elements into one piece is a much harder job.\u0000 System engineering is being successfully employed by NASA and aircraft industry today. The approach helps bring together numerous correlated technologies in spacecraft and aircraft building. In the oil industry, BP and Shell are the pioneers in using VDE. Seeking to tailor the system engineering approaches to the applied problems of Gazprom Neft, the Company engineers deliver work in several stages. Stage one is a look back study of projects that covers all the aspects of oil production, from seismic survey to field operation. To build the optimal concept, a project team studies special literature and existing practices in related sectors, essentially among foreign counterparts. The Company has already analyzed the existing research breakthroughs, best practices and digital tools.\u0000 Even though VDE will chiefly focus on the development of new reservoirs, its individual practices may be successfully utilized at existing assets.\u0000 Oil and gas production system is growing more complex every day because of the number of control elements and uncertainties that the oil and gas Company has to face at the early stages of planning a future asset. Development of each product, from concept to final implementation, involves a number of lifecycle stages; the sequence of these stages and the necessary toolkit for each stage is identified by the area of expertise known as system engineering. System engineering works perfectly if a certain product or system has existing equivalents, but engineers today may have to handle their tasks in absence of equivalent solutions, which necessitates engagement of creative competences. Development of such competences and inventive problem solving are in the focus of the area of expertise known as creative problem solving that relies on the TRIZ methods (TRIZ = theory of inventive problem solving). Technology intelligence is the area of expertise that focuses on aggregation of experience and employment of solutions from related industries or even from fu","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75663894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptation of Technologies Making Clean out Operations Environment Friendly and Cost Effective - Converting Failure into Success Using New Type of Fluidic Oscillator 清洁作业环境友好、成本效益高的技术适应——新型流体振荡器化失败为成功
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/206099-ms
Barzan Ahmed, F. A. Khoshnaw, Mustansar Raza, Hossam A. Elmoneim, Kamil Shehzad, Mustafa Sarbast, Omar El Zanaty, Serwer Yousif
{"title":"Adaptation of Technologies Making Clean out Operations Environment Friendly and Cost Effective - Converting Failure into Success Using New Type of Fluidic Oscillator","authors":"Barzan Ahmed, F. A. Khoshnaw, Mustansar Raza, Hossam A. Elmoneim, Kamil Shehzad, Mustafa Sarbast, Omar El Zanaty, Serwer Yousif","doi":"10.2118/206099-ms","DOIUrl":"https://doi.org/10.2118/206099-ms","url":null,"abstract":"\u0000 A case study is presented detailing the methodology used to perform the clean-out operation in a water disposal well of Khurmala Field, Kurdistan Region of Iraq. Untreated disposed water caused scaling and plugging in perforated liner and in the open hole that eventually ceased injection. Multiple attempts and investments were made in recent years to resume access to the injection zone using high-pressure hydro-jetting tools coupled with acid treatments. However, these attempts yielded futile efforts. Before proceeding with the decision of workover, it was decided to go for one final attempt to regain wellbore access using Fluidic Oscillator (SFO).\u0000 Fluidic Oscillator (SFO) having pulsing, cavitation and helix jetting action was used in combination with a train of fluids consisting of diesel, 28% HCl and gel. The clean out was performed in stages of 10m, to clean the fill from 1091m to 1170m. Since the well bore was initially isolated from the injection zone, the cleanout was conducted with non-nitrified fluids. As the cleanout progressed and access to the liner and open hole was regained, the circulation of insoluble fill to surface required a lighter carrying fluid. Nitrification, volume of the fluids, batch cycling, and ROP were designed considering the downhole dynamic changes expected during each stage of the operation.\u0000 The combination of SFO, the thorough selection of treatment fluids and the accurate downhole hydraulics simulations pertaining to different stages of the operation offered an effective solution and regained the connectivity between the wellbore and the injection zone. The injection rate of water increased from 0 bpm at 700 psi to 15 bpm at 200 psi. Throughout this operation, the SFO helix, cavitation, and acoustic pulse (alike) jetting proved to be more effective than other single acting rotating jetting tools. Also, Environmental impact was reduced by eliminating the need for a rig workover operation. The matching of the injection pressure when the well was first completed and the post job value indicated that the complete zone was exposed and scale deposits were removed from the critical matrix or bypassed.\u0000 SFO has an effective jetting near wellbore region, while the kinetic energy transferred via fluid makes the impact stronger in the deeper region. Internal mechanism of the tool allows it to handle high pumping rate and pressures, external finishing offer multi-port orientation of outflow that allows targeting the fill in desired directions. Presently the SFO used in the case study is the only technology that has pulse, cavitation, and helix jetting structure. Also, since the tool does not require redressing, it proves to be an efficient, safe and cost effective alternative","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"182 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80360372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Evaluation of Water Flooding in a Low Resistivity Heavy Oil Reservoir with NMR and Conventional Logs 利用核磁共振和常规测井对低阻稠油油藏水驱定量评价
Day 3 Thu, September 23, 2021 Pub Date : 2021-09-15 DOI: 10.2118/205928-ms
Xinlei Shi, Jiansheng Zhang, Yunlong Lu, Zhilei Han, Yifan He
{"title":"Quantitative Evaluation of Water Flooding in a Low Resistivity Heavy Oil Reservoir with NMR and Conventional Logs","authors":"Xinlei Shi, Jiansheng Zhang, Yunlong Lu, Zhilei Han, Yifan He","doi":"10.2118/205928-ms","DOIUrl":"https://doi.org/10.2118/205928-ms","url":null,"abstract":"\u0000 The classification of water flooding severity is crucial for planning reservoir production and improving the recovery ratio. In this paper, we study a siliciclastic heavy oil reservoir in Bohai Bay, with resistivity reading close to, or even lower than the wet zone (3~5Ω.m). In this environment, computing original reservoir Sw using Traditional hydrocarbon saturation equation is challenging. As a result, the displacement efficiency of a water drive cannot be accurately determined.\u0000 In order to properly evaluate displacement efficiency, we must estimate initial reservoir Sw (Swirr) and the modern day Sw. Sw can typically be estimated from NMR data with a proper T2 time cutoff. However, in heavy oil reservoirs, the relaxation times of oil and capillary bound water overlap, leading to an over-estimation of Sw. We propose to compensate for the heavy oil effect by adjusting the cutoff until NMR Sw matches the Sw from core Mercury Injection for Capillary Pressure (MICP). As oilfield development proceeds, water displaces some oil in the pore space. Since the injected water has higher salinity than reservoir water, formation resistivity (Rw) becomes lower. Based on the material balance theory, the variable multiple water injection material balance equation is established, and the equation set is established by combining the material balance equation with the Simandoux equation and the calculation formula of mixed water resistivity (Rwz). According to the rock electricity experiment under different salinity, the dynamic rock electricity parameters are used in the Simandoux equation, and the mixed water resistivity and modern day Sw after water flooding are solved iteratively under the original SW constraint. The displacement efficiency is calculated as the difference between Sw and modern day Sw.\u0000 The proposed method was applied to 10 wells and improved the Sw accuracy by 5%-15%. The continuous solution Rw from our method matches Rw measured in the lab. The calculated displacement efficiency is compared with actual production history and the accuracy improved from 68% to 80%.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89832770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信