CytotechnologyPub Date : 2023-08-01Epub Date: 2023-05-26DOI: 10.1007/s10616-023-00582-2
Nesa Fani, Maria Peshkova, Polina Bikmulina, Reihaneh Golroo, Peter Timashev, Massoud Vosough
{"title":"Fabricating the cartilage: recent achievements.","authors":"Nesa Fani, Maria Peshkova, Polina Bikmulina, Reihaneh Golroo, Peter Timashev, Massoud Vosough","doi":"10.1007/s10616-023-00582-2","DOIUrl":"10.1007/s10616-023-00582-2","url":null,"abstract":"<p><p>This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 4","pages":"269-292"},"PeriodicalIF":2.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9736581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-08-01Epub Date: 2023-06-01DOI: 10.1007/s10616-023-00581-3
Mukunda Goswami, Nevil Pinto, B S Yashwanth, A Sathiyanarayanan, Reza Ovissipour
{"title":"Development of a cell line from skeletal trunk muscle of the fish <i>Labeo rohita</i>.","authors":"Mukunda Goswami, Nevil Pinto, B S Yashwanth, A Sathiyanarayanan, Reza Ovissipour","doi":"10.1007/s10616-023-00581-3","DOIUrl":"10.1007/s10616-023-00581-3","url":null,"abstract":"<p><p><i>Labeo rohita</i> is a widely cultivated tropical freshwater carp and found in rivers of South Asian region. A new cell line, designated LRM, has been developed from the muscle tissue of <i>L. rohita</i>. Muscle cells were subcultured up to 38 passages in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF. The LRM cells exhibited fibroblastic morphology with a doubling time of 28 h, and a plating efficiency of 17%. A maximum growth rate was observed for LRM cells at 28 °C, 10% FBS and 10 ng/ml bFGF. A cytochrome C oxidase subunit I (COI) gene sequence was used to authenticate the developed cell line. Chromosome analysis revealed 50 diploid chromosomes. The fibroblastic characteristics of the of the LRM cells was confirmed by immunocytochemistry. The expression of MyoD gene in LRM cells was analyzed by quantitative PCR in comparison with passages 3, 18 and 32. The expression of MyoD was higher at passage 18 compared to the passages 3 and 32. The LRM cells attached properly onto the 2D scaffold and the expression of the F-actin filament protein was confirmed by phalloidin staining followed by counter staining with DAPI to observe the distribution of the muscle cell nuclei and the cytoskeleton protein. A revival rate of 70-80% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. This study would further contribute to understanding the in vitro myogenesis and progress toward cultivated fish meat production.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 4","pages":"349-361"},"PeriodicalIF":2.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9741983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01DOI: 10.1007/s10616-023-00571-5
John Benson D Choa, Tadahiro Sasaki, Hiroyuki Kajiura, Kazuyoshi Ikuta, Kazuhito Fujiyama, Ryo Misaki
{"title":"Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells.","authors":"John Benson D Choa, Tadahiro Sasaki, Hiroyuki Kajiura, Kazuyoshi Ikuta, Kazuhito Fujiyama, Ryo Misaki","doi":"10.1007/s10616-023-00571-5","DOIUrl":"https://doi.org/10.1007/s10616-023-00571-5","url":null,"abstract":"<p><p>Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins. In this study, we adapted IgA1-producing CHO-K1 suspension cells to a high concentration (150 mM) of different disaccharides, namely sucrose, maltose, lactose, and trehalose, to improve the production and quality of recombinant IgA1. The disaccharide-adapted cell lines had slower cell growth rates, but their cell viability was extended compared to the nonadapted IgA1-producing cell line. Glucose consumption was exhausted in all cell lines except for the maltose-adapted one, which still contained glucose even after the 9th day of culturing. Lactate production was higher among the disaccharide-adapted cell lines. The specific productivity of the maltose-adapted IgA1-producing line was 4.5-fold that of the nonadapted line. In addition, this specific productivity was higher than in previous productions of recombinant IgA1 with a lambda chain. Lastly, secreted IgA1 aggregated in all cell lines, which may have been caused by self-aggregation. This aggregation was also found to begin inside the cells for maltose-adapted cell line. These results suggest that a high concentration of disaccharide-supplemented induced hyperosmolarity in the IgA1-producing CHO-K1 cell lines. In addition, the maltose-adapted CHO-K1 cell line benefited from having an additional source of carbohydrate.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00571-5.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"219-229"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01Epub Date: 2023-04-07DOI: 10.1007/s10616-022-00564-w
Maryam Haj Ali Askari, Majid Shahabi, Amir Asri Kojabad, Mahin Nikougoftar Zarif
{"title":"Reconstruction of bone marrow microenvironment for expansion of hematopoietic stem cells by a histone deacetylase inhibitor.","authors":"Maryam Haj Ali Askari, Majid Shahabi, Amir Asri Kojabad, Mahin Nikougoftar Zarif","doi":"10.1007/s10616-022-00564-w","DOIUrl":"10.1007/s10616-022-00564-w","url":null,"abstract":"<p><p>Ex vivo expansion of hematopoietic stem cells (HSCs) is an approach for overcoming cell insufficiency for umbilical cord blood transplantation. It was suggested that in common ex vivo cultures, the stemness specificity of HSCs is rapidly reducing due to DNA hypermethylation. Here, Nicotinamide (NAM), a DNA methyltransferase and histone deacetylase inhibitor, is used with a bioengineered Bone Marrow-like niche (BLN) for HSC ex vivo expansion. The CFSE cell proliferation assay was used for tracking HSCs division. qRT-PCR was conducted to assay the HOXB4 mRNA expression levels. The morphology of BLN-cultured cells was analyzed using scanning electron microscopy (SEM). NAM boosted the induction of HSC proliferation in the BLN group compared to the control group. In addition, the ability of HSCs to colonize was more significant in the BLN group than in the control group. Our data suggest that the presence of NAM in bioengineered niches promotes HSC proliferation. The presented approach showed that small molecules could be used in the clinical setting to overcome the limited number of CD34<sup>+</sup> cells in cord blood units.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"195-206"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9846866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disease-related biomarkers as experimental endpoints in 3D skin culture models.","authors":"Deepa Chaturvedi, Swarali Paranjape, Ratnesh Jain, Prajakta Dandekar","doi":"10.1007/s10616-023-00574-2","DOIUrl":"10.1007/s10616-023-00574-2","url":null,"abstract":"<p><p>The success of in vitro 3D models in either recapitulating the normal tissue physiology or altered physiology or disease condition depends upon the identification and/or quantification of relevant biomarkers that confirm the functionality of these models. Various skin disorders, such as psoriasis, photoaging, vitiligo, etc., and cancers like squamous cell carcinoma and melanoma, etc. have been replicated via organotypic models. The disease biomarkers expressed by such cell cultures are quantified and compared with the biomarkers expressed in cultures depicting the normal tissue physiology, to identify the most prominent variations in their expression. This may also indicate the stage or reversal of these conditions upon treatment with relevant therapeutics. This review article presents an overview of the important biomarkers that have been identified in <i>in-vitro</i> 3D models of skin diseases as endpoints for validating the functionality of these models.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00574-2.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"165-193"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01Epub Date: 2023-04-01DOI: 10.1007/s10616-023-00575-1
Ghmkin Hassan, Said M Afify, Maram H Zahra, Hend M Nawara, Kazuki Kumon, Yoshiaki Iwasaki, David S Salomon, Akimasa Seno, Masaharu Seno
{"title":"GSK-3α/β and MEK inhibitors assist the microenvironment of tumor initiation.","authors":"Ghmkin Hassan, Said M Afify, Maram H Zahra, Hend M Nawara, Kazuki Kumon, Yoshiaki Iwasaki, David S Salomon, Akimasa Seno, Masaharu Seno","doi":"10.1007/s10616-023-00575-1","DOIUrl":"10.1007/s10616-023-00575-1","url":null,"abstract":"<p><p>Induced pluripotent stem cells (iPSCs) are useful tools for modeling diseases and developing personalized medicine. We have been developing cancer stem cells (CSCs) from iPSCs with conditioned medium (CM) of cancer-derived cells as the mimicry of the microenvironment of tumor initiation. However, the conversion of human iPSCs has not always been efficient with only CM. In this study, human iPSCs reprogrammed from monocytes of healthy volunteers were cultured in a media containing 50% of the CM from human pancreatic cancer derived BxPC3 cells supplemented with a MEK inhibitor (AZD6244) and a GSK-3α/β inhibitor (CHIR99021). The survived cells were assessed for the characteristics of CSCs in vitro and in vivo. As a result, they exhibited CSC phenotypes of self-renewal, differentiation, and malignant tumorigenicity. Primary culture of the malignant tumors of the converted cells exhibited the elevated expression of CSC related genes CD44, CD24 and EPCAM maintaining the expression of stemness genes. In conclusion, the inhibition of GSK-3α/β and MEK and the microenvironment of tumor initiation mimicked by the CM can convert human normal stem cells into CSCs. This study could provide insights into establishing potentially novel personalized cancer models which could help investigate the tumor initiation and screening of personalized therapies on CSCs.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00575-1.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"243-253"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10296938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01Epub Date: 2023-02-24DOI: 10.1007/s10616-023-00572-4
Yan Lin, Dali Mu
{"title":"Immunomodulatory effect of human dedifferentiated fat cells: comparison with adipose-derived stem cells.","authors":"Yan Lin, Dali Mu","doi":"10.1007/s10616-023-00572-4","DOIUrl":"10.1007/s10616-023-00572-4","url":null,"abstract":"<p><p>Dedifferentiated fat cells (DFATs), which are originated by the dedifferentiation of adipocytes, display surface markers of mesenchymal stem cells and are able to differentiate into different cell types, thus, yielding a huge therapeutic potential in repairing damaged tissues and organs. The use of allogeneic stem cells from healthy donors constitutes the basis of a new strategy for cell therapy in the field of transplantation and the first requirement for allografts is determining their immunological properties. In this study, human DFATs and ADSCs were passaged as in vitro models to investigate their immunomodulatory effects. Phenotypic analysis of cell surface markers and three-line differentiation protocols were used to identify stem cells. The immunogenic phenotypes of DFATs and ADSCs were analyzed by flow cytometry and a mixed lymphocyte reaction was used to assess their immune function. The characteristics of stem cells were confirmed by phenotypic identification of cell surface markers and three-line differentiation. Flow cytometry analysis showed that P3 generation DFATs and ADSCs contained human leukocyte antigen (HLA) class I molecules, but did not express HLA class II molecules and costimulatory molecules CD40, CD80 and CD86. Moreover, allogeneic DFATs and ADSCs could not induce the proliferation of peripheral blood mononuclear cells (PBMCs). In addition, both populations were shown to inhibit the Concanavalin A-stimulated proliferation of PBMCs and act as third-party cells responsible for inhibiting the mixed lymphocyte response. DFATs have immunosuppressive properties similar to ADSCs. Based on this, allogeneic DFATs have potential applications in tissue repair or cell therapy.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"231-242"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9475871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01Epub Date: 2023-02-03DOI: 10.1007/s10616-023-00570-6
Li An, Hong Gao, Yi Zhong, Yanqiu Liu, Ying Cao, Jing Yi, Xiang Huang, Chunlei Wen, Rui Tong, Zhijun Pan, Xu Yan, Meiyan Liu, Shengzhao Wang, Xue Bai, Hao Wu, Tingju Hu
{"title":"Molecular chaperones HSP40, HSP70, STIP1, and HSP90 are involved in stabilization of Cx43.","authors":"Li An, Hong Gao, Yi Zhong, Yanqiu Liu, Ying Cao, Jing Yi, Xiang Huang, Chunlei Wen, Rui Tong, Zhijun Pan, Xu Yan, Meiyan Liu, Shengzhao Wang, Xue Bai, Hao Wu, Tingju Hu","doi":"10.1007/s10616-023-00570-6","DOIUrl":"10.1007/s10616-023-00570-6","url":null,"abstract":"<p><p>To investigate the involvement of stress induced phosphoprotein 1 (STIP1), heat shock protein (HSP) 70, and HSP90 in ubiquitination of connexin 43 (Cx43) in rat H9c2 cardiomyocytes. Co-immunoprecipitation was used to detect protein-protein interactions and Cx43 ubiquitination. Immunofluorescence was used for protein co-localization. The protein binding, Cx43 protein expression, and Cx43 ubiquitination were reanalyzed in H9c2 cells with modified STIP1 and/or HSP90 expression. STIP1 bound to HSP70 and HSP90, and Cx43 bound to HSP40, HSP70, and HSP90 in normal H9c2 cardiomyocytes. Overexpression of STIP1 promoted the transition of Cx43-HSP70 to Cx43-HSP90 and inhibited Cx43 ubiquitination; knockdown of STIP1 resulted in the opposite effects. Inhibition of HSP90 counteracted the inhibitory effect of STIP1 overexpression on Cx43 ubiquitination. STIP1 suppresses Cx43 ubiquitination in H9c2 cardiomyocytes by promoting the transition of Cx43-HSP70 to Cx43-HSP90.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"207-217"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-06-01Epub Date: 2023-04-03DOI: 10.1007/s10616-023-00576-0
Xiaodong Li, Xuedong Yin, Heyi Bao, Chang Liu
{"title":"Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells.","authors":"Xiaodong Li, Xuedong Yin, Heyi Bao, Chang Liu","doi":"10.1007/s10616-023-00576-0","DOIUrl":"10.1007/s10616-023-00576-0","url":null,"abstract":"<p><p>Circular RNA-based competing endogenous RNA (ceRNA) networks contribute to the initiation and development of various types of cancer, including hepatocellular carcinoma (HCC). Although a novel circular RNA itchy E3 ubiquitin protein ligase (circITCH) is identified as a tumor suppressor in HCC, its detailed molecular mechanisms have not been fully delineated. The present study was designed to resolve this issue, and we firstly verified that circITCH suppressed the malignant phenotypes in HCC cells by regulating a novel miR-421/B-cell translocation gene 1 (BTG1) axis. Specifically, through performing the Real-Time qPCR analysis, we noticed that circITCH expression in HCC tumor tissues or cell lines were significantly lower than that in adjacent normal tissues or normal hepatocytes, and the expression levels of circITCH were negatively correlated with tumor size and TNM stage in HCC patients. Next, our functional experiments confirmed that overexpression of circITCH induced cell cycle arrest and apoptosis, and reduced cell viability and colony forming ability in Hep3B and Huh7 cells. Mechanically, bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assay demonstrated that circITCH served as RNA sponges for miR-421 to elevate BTG1 levels in HCC cells. The rescuing experiments verified that upregulation of miR-421 promoted cell viability and colony formation, and reduced apoptosis, which were abrogated by overexpression of circITCH or BTG1. In conclusion, this study identified a novel circITCH/miR-421/BTG1 axis that restrained the development of HCC, and our findings provided novel biomarkers for the treatment of this disease.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 3","pages":"255-267"},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9475870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CytotechnologyPub Date : 2023-04-01Epub Date: 2022-12-15DOI: 10.1007/s10616-022-00566-8
Haruna Hori, Ayaka Kotani, Junya Abe, Shuji Matsuguchi, Yohei Hirai
{"title":"Extracellular epimorphin impairs expression and processing of profilaggrin in HaCaT keratinocytes.","authors":"Haruna Hori, Ayaka Kotani, Junya Abe, Shuji Matsuguchi, Yohei Hirai","doi":"10.1007/s10616-022-00566-8","DOIUrl":"10.1007/s10616-022-00566-8","url":null,"abstract":"<p><p>The expression and processing of filaggrin, a filament-associated protein in the skin epidermis, is closely associated with keratinocyte cornification. The large precursor profilaggrin (Pro-FLG) is initially detected at the granular layer in keratohyalin granules, subsequently processed into 10 to 12 filaggrin monomers (mFLGs) for keratin assembly, and ultimately degraded into smaller peptides that behave as natural moisturizing factor (NMF) at the outermost epidermis. We previously reported that epimorphin (EPM) extruded upon external stimuli severely perturbs epidermal terminal differentiation. Using HaCaT keratinocytes with inducible expression and recombinant EPM and FLG, we investigated the effect of extracellular EPM on the expression profile of filaggrin. As expression and processing of Pro-FLG in primary keratinocytes are accompanied with apoptotic cell death, we employed HaCaT keratinocytes that grow and express filaggrin mRNA in standard culture medium. In response to ectopic stimulation with extracellular EPM, Pro-FLG expression decreased with elimination of keratohyalin granules in the cells, with filaggrin mRNA remained constant and profilaggrin processing was not accelerated. Additionally, using a recombinant form of mFLG engineered for intracellular localization, we found that extracellular EPM hindered proteolytic cleavage of mFLG for production of NMF. Taken together, extracellularly extruded EPM, an epidermal cornification blocker, not only decreases Pro-FLG expression but also reduces the production of NMF in HaCaT keratinocytes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-022-00566-8.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 2","pages":"123-133"},"PeriodicalIF":2.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}