Current molecular pharmacology最新文献

筛选
英文 中文
Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter. 线粒体靶向解偶联剂通过增强ICAM1基因启动子的甲基化减少内皮细胞的炎症反应。
IF 2.9 4区 生物学
Current molecular pharmacology Pub Date : 2024-01-01 DOI: 10.2174/1874467217666230815142556
Liudmila A Zinovkina, Ciara I Makievskaya, Ivan I Galkin, Roman A Zinovkin
{"title":"Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter.","authors":"Liudmila A Zinovkina, Ciara I Makievskaya, Ivan I Galkin, Roman A Zinovkin","doi":"10.2174/1874467217666230815142556","DOIUrl":"10.2174/1874467217666230815142556","url":null,"abstract":"<p><strong>Introduction: </strong>The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.</p><p><strong>Methods: </strong>We studied the long-term effects of mitochondria-targeted compounds with the uncoupler's activities: the antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.</p><p><strong>Results: </strong>It was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.</p><p><strong>Conclusion: </strong>Low concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e150823219723"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10017169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening and Identification of ESR1 as a Target of Icaritin in Hepatocellular Carcinoma: Evidence from Bibliometrics and Bioinformatic Analysis 筛选和鉴定肝细胞癌中淫羊藿苷的靶点 ESR1:文献计量学和生物信息学分析的证据
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-12-27 DOI: 10.2174/0118761429260902230925044009
Yinghui Zhou, Jia Gu, Huiying Yu, Fengyang Chen, Chao Long, Maiweilan Maihemuti, Tingsong Chen, Wei Zhang
{"title":"Screening and Identification of ESR1 as a Target of Icaritin in Hepatocellular Carcinoma: Evidence from Bibliometrics and Bioinformatic Analysis","authors":"Yinghui Zhou, Jia Gu, Huiying Yu, Fengyang Chen, Chao Long, Maiweilan Maihemuti, Tingsong Chen, Wei Zhang","doi":"10.2174/0118761429260902230925044009","DOIUrl":"https://doi.org/10.2174/0118761429260902230925044009","url":null,"abstract":"Background: In 2022, icaritin a Traditional Chinese Medicine with estrogen-like activities was recommended by the CSCO guidelines as a systematic treatment for patients with advanced HCC due to its clinical safety and efficacy. However the mechanism and targets of icaritin are unclear. In this study we aimed to reveal the target of icaritin in HCC Methods: First literature related to icaritin was downloaded from the Web of Science. The software programs “Rstudio” “VOSviewer” and “Mendeley Desktop” were used to analyze the distribution of icaritin publications and research hotspots. Meanwhile icaritin-related genes were obtained by combining them with the PubChem database. Second transcriptome data of HCC patients were obtained from the TCGA database. The proteinprotein interaction (PPI) analysis of icaritin-related genes was performed using the String data platform and the visualization and network topology analysis were performed using Cytoscape. Cox regression analyses were combined to screen the hub target and verified it through cell experiments. Results: A total of 239 icaritin-related articles were obtained HCC is a new hotspot in the icaritin field. 292 icaritin-related genes were obtained and a core module containing 34 genes was obtained by module division. Among them ESR1 was an independent prognostic factor. Molecular docking showed that ESR1 and icaritin had a high affinity. Functional studies revealed that ESR1 inhibits HCC cell malignant proliferation and improves the sensitivity of HCC cells to icaritin. Conclusion: We propose that ESR1 as a target of icaritin may be conducive to improving icaritin therapy.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBM3 Accelerates Wound Healing of Skin in Diabetes through ERK1/2 Signaling RBM3通过ERK1/2信号促进糖尿病皮肤伤口愈合
4区 生物学
Current molecular pharmacology Pub Date : 2023-11-01 DOI: 10.2174/0118761429260980231005105929
Jianguo Feng, Menghong Long, Xin Zhao, Pijun Yan, Yunxiao Lin, Maohua Wang, Wenhua Huang
{"title":"RBM3 Accelerates Wound Healing of Skin in Diabetes through ERK1/2 Signaling","authors":"Jianguo Feng, Menghong Long, Xin Zhao, Pijun Yan, Yunxiao Lin, Maohua Wang, Wenhua Huang","doi":"10.2174/0118761429260980231005105929","DOIUrl":"https://doi.org/10.2174/0118761429260980231005105929","url":null,"abstract":"Background: With the increasing risk of infections and other serious complications, the underlying molecular mechanism of wound healing impairment in diabetes deserves attention. Cold shock proteins (CSPs), including CIRP and RBM3 are highly expressed in the skin; however, it is unknown whether CSPs are involved in the wound-healing impairment of diabetic skin. Objective: The objective of this study is to investigate the effects of RBM3 on skin wound healing in diabetes. Methods: In vitro experiments, western blot assay was used to test the levels of proteins in HaCaT cells treated with different concentrations of glucose. RBM3 was over-expressed in HaCaT cells using lentivirus particles. Cell viability was analyzed by Cell-Counting Kit-8 assay and colony formation assay. The migration of HaCaT cells at different concentrations of glucose was evaluated by wound healing assay. In vivo experiments, the mouse model of diabetes was established by intraperitoneal injection of streptozotocin. Four weeks later, the mice were anesthetized by intraperitoneal injection of pentobarbital sodium for skin tissue collection or wound healing experiments. RBM3 knockout mice were established by removing exons 2–6 using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technique and then used in skin wound healing experiments with or without diabetic stress. Results: In this study, the expression of RBM3, rather than CIRP, was altered in the skin of diabetic specimens, and the RBM3’s overexpression accelerated the cell viability and proliferation of HaCaT cells under high glucose conditions. RBM3 deficiency caused delayed wound healing in RBM3 knockout in diabetic conditions. Moreover. RBM3 enhanced the ERK1/2 signaling pathway, and its inhibitor FR180204 blocked the beneficial effect of RBM3 overexpression on skin wound healing in diabetes. Conclusion: RBM3 activated the ERK1/2 signal to facilitate skin wound healing in diabetes, offering a novel therapeutic target for its treatment.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"55 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135111812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways 青蒿素通过ERK1/2和p38 MAPK信号通路减弱异丙肾上腺素诱导的心肌肥厚
4区 生物学
Current molecular pharmacology Pub Date : 2023-10-13 DOI: 10.2174/0118761429244886230927070818
Renxing Song, Chunming Xiong, Juncai Bai, Zhenzhou Bai, Wei Liu
{"title":"Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways","authors":"Renxing Song, Chunming Xiong, Juncai Bai, Zhenzhou Bai, Wei Liu","doi":"10.2174/0118761429244886230927070818","DOIUrl":"https://doi.org/10.2174/0118761429244886230927070818","url":null,"abstract":"Background: Artemisinin (ART) is mainly derived from Artemisia annua, a traditional Chinese medicinal plant, and has been found to affect cellular biochemical processes, such as proliferation, angiogenesis, and apoptosis, in addition to its antimalarial properties. However, its effect on cardiac hypertrophy and the underlying mechanisms remain unclear. Objective: This study aimed to investigate the effect of ART on cardiac hypertrophy and explore its possible mechanisms. Materials and Methods: A rat model was established by intraperitoneal injection of isoproterenol (ISO) for 3 days, and the degree of myocardial hypertrophy was compared among 5 groups: a control (CON) group, an ISO group, and groups treated with different doses of ART (7 mg/kg/d, 35 mg/kg/d, and 75 mg/kg/d). Echocardiography was used to evaluate cardiac function and structure. The cross-sectional area of cardiomyocytes was measured by hematoxylin and eosin (H&amp;E) staining. The heart weight (HW), body weight (BW), and tail length were measured, and the HW/tail length ratio and the HW/BW ratio were calculated. H9C2 rat cardiomyocytes were cultured, and different amounts of ART were added 2 hours before ISO stimulation. Phalloidin staining was used to evaluate the degree of cell hypertrophy. The levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were quantified in rat plasma and cell supernatant using enzyme-linked immunosorbent assay (ELISA), while the expression levels of p- ERK1/2, p-JNK, and p-p38 MAPK were assessed in the myocardium and H9C2 cells via western blot analysis. Conclusion: The mechanism of ART against cardiac hypertrophy was related to inhibition of the ERK1/2 and p38 MAPK signaling pathways. Result: Intragastric administration of ART at a dosage of 35 mg/kg/d or over-mitigated the early-stage cardiac hypertrophy induced by ISO in rats led to a reduction in left ventricular posterior wall diastolic thickness, interventricular septal thickness at diastole, lowered ANP and BNP levels, as well as a decrease in HW/tail length and HW/BW ratio. In vitro studies demonstrated that ART at a concentration of 100 μM inhibited ISO-mediated hypertrophy of H9C2 cells. The ISO group showed a higher p-ERK/GAPDH ratio and p-p38 MAPK/GAPDH ratio than the control group both in vivo and in vitro. Although the p-JNK/GAPDH ratio was increased in the ISO group, there was no statistical difference. The p-ERK/GAPDH and p-p38/GAPDH ratios were significantly lower in the ART group than in the ISO group.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135922774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-treatment of Astragaloside IV with Vitamin D in Diabetic Peripheral Neuropathic Rats: Protective Effects and Potential Mechanisms 黄芪甲苷与维生素D联合治疗糖尿病周围神经病变大鼠:保护作用及可能机制
4区 生物学
Current molecular pharmacology Pub Date : 2023-10-13 DOI: 10.2174/0118761429267000231004111024
Fengyan Tang, Bo Zhao, Li Zhang, Faisal Raza, Hajra Zafar, Shao Zhong, Lin Li, Wenhua Zhu, Lingna Fang, Bing Lu, Liwen Shen, Ping Guo, Nengxing Yu, Quanmin Li
{"title":"Co-treatment of Astragaloside IV with Vitamin D in Diabetic Peripheral Neuropathic Rats: Protective Effects and Potential Mechanisms","authors":"Fengyan Tang, Bo Zhao, Li Zhang, Faisal Raza, Hajra Zafar, Shao Zhong, Lin Li, Wenhua Zhu, Lingna Fang, Bing Lu, Liwen Shen, Ping Guo, Nengxing Yu, Quanmin Li","doi":"10.2174/0118761429267000231004111024","DOIUrl":"https://doi.org/10.2174/0118761429267000231004111024","url":null,"abstract":"Objective: The potential mechanism underlying the protective effect of Astragaloside IV (AS-IV) co-treatment with 1, 25-dihydroxy-vitamin D (Vit-D) on neuropathy in diabetic high-fat rats was investigated Methods: The rat diabetic hyperlipidemia (DH) model was established via streptozotocin and a high-fat diet (HFD). After co-treatment (of AS-IV and Vit-D at respective doses of 50 mg/kg via oral gavage and 30000 IU/kg via intramuscular injection), blood glucose levels, markers of inflammation and oxidative stress, as well as apoptosis and histopathology were evaluated with appropriate techniques. Results: Co-treatment could effectively reduce blood glucose levels substantially (p< 0.01), improve weight loss, and decrease oral glucose tolerance. Reduced respective sensory and motor nerve conduction velocities in rats were substantially improved (p<0.01) after co-treatment. Also, we observed obvious improvement in DH-induced injured nerve fiber myelin structure and other organ pathologies in co-treated rats. Besides, we observed up-regulated expressions of peroxisomal-proliferator activated receptor-alpha (PPAR-α) and Vit-D receptors (VDR) (p< 0.01) through the western blotting technique. Using the same technique, we also discovered reduced levels of interleukin (IL)1 beta, IL-6, and tumor necrosis factor-alpha, coupled with increased IL-10 and superoxide dismutase levels (p< 0.01). Importantly, co-treatment could effectively exert antioxidative and anti-inflammatory effects. Also, co-treatment resulted in the up-regulation of PPAR-α and VDR expressions, inhibition of the renin–angiotensin–aldosterone system, and promotion of β-cell sensitivity to insulin. Conclusion: The combined application of AS-IV and Vit-D exhibited health effects such as anti-oxidation, regulation of inflammatory factors, and promotion of cell repair, which may be considered as the mechanisms underlying treatment of diabetic peripheral neuropathy and improvement in biochemical indicators.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135922775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. 树状体纳米茄碱通过抑制PI3K/AKT/mTOR信号通路和抑制hTERT表达在慢性髓性白血病细胞中的抗癌作用
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-03-27 DOI: 10.2174/1874467215666220516143155
Golareh Asgaritarghi, Seyedeh Sahar Mortazavi Farsani, Dina Sadeghizadeh, Farhood Najafi, Majid Sadeghizadeh
{"title":"Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression.","authors":"Golareh Asgaritarghi,&nbsp;Seyedeh Sahar Mortazavi Farsani,&nbsp;Dina Sadeghizadeh,&nbsp;Farhood Najafi,&nbsp;Majid Sadeghizadeh","doi":"10.2174/1874467215666220516143155","DOIUrl":"https://doi.org/10.2174/1874467215666220516143155","url":null,"abstract":"<p><strong>Background: </strong>Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining the aforementioned pro-survival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c- MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein, a nanocarrier was employed to intensify its pernicious effect on cancerous cells.</p><p><strong>Objective: </strong>The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells.</p><p><strong>Methods: </strong>DNS characterization was determined by NMR, DLS and TEM. The viability, apoptosis and cell cycle of DNS and imatinib-treated cells were determined. A quantitative real-time PCR was employed to measure the expression of PI3K, AKT, mTOR, S6K, NF-kB, c-MYC and hTERT mRNAs. The Protein levels were evaluated by western blot.</p><p><strong>Results: </strong>Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on the expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by the dephosphorelating AKT protein.</p><p><strong>Conclusion: </strong>The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and the HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 5","pages":"592-608"},"PeriodicalIF":2.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9481217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. 香芹酚作为癌症靶点/信号通路的潜在调节剂。
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-03-27 DOI: 10.2174/1874467215666220705142954
Jyoti Singh, Suaib Luqman, Abha Meena
{"title":"Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways.","authors":"Jyoti Singh,&nbsp;Suaib Luqman,&nbsp;Abha Meena","doi":"10.2174/1874467215666220705142954","DOIUrl":"https://doi.org/10.2174/1874467215666220705142954","url":null,"abstract":"<p><strong>Background: </strong>Carvacrol is a naturally occurring phenolic isopropyl monoterpene isolated from oregano, thyme, pepperwort, ajwain, marjoram, and wild bergamot. It possesses pharmacological activities, including anticancer, anti-genotoxic, and anti-inflammation associated with antioxidant properties. The antioxidant property of carvacrol is found to be accountable for its anticancer property. Thus, the present review summarizes and discusses the anticancer potential of carvacrol, revealing its target, signalling pathways, efficacy, pharmacokinetics, and toxicity.</p><p><strong>Objective: </strong>Carvacrol showed promising activity to be considered in more detail for cancer treatment. This review aims to summarize the evidence concerning the understanding of anticancer potential of carvacrol. However, the mode of action of carvacrol is not yet fully explored and hence requires detailed exploratory studies. This review consists of carvacol's in vitro, in vivo, preclinical and clinical studies.</p><p><strong>Methods: </strong>A literature search was done by searching various online databases like Pubmed, Scopus, and Google Scholar with the specific keyword \"Carvacrol,\" along with other keywords, such as \"antioxidant properties,\" \"oncology research,\" \"genotoxicity,\" and \"anti-inflammatory property\".</p><p><strong>Results: </strong>Carvacrol possesses weak mutagenic and genotoxic potential at non-toxic doses. Carvacrol alone shows the potential to target cancerous cells and significantly deter the growth of cancer cells; this is a targeted method. It offers anti-inflammatory effects by decreasing oxidative stress, primarily targeting ER and mitochondria. Carvacrol depicts targeted explicitly ROSdependent and mitochondrial-mediated apoptosis in different cancer cells. Moreover, carvacrol significantly regulates the cell cycle and prevents tumor progression. Few reports also suggest its significant role in inhibiting cell migration, invasion, and angiogenesis in tumor cells. Hence, carvacrol affects cell survival and cell-killing activity by targeting key biomarkers and major signalling pathways, including PI3K/AKT/mTOR, MAPK, STAT3, and Notch.</p><p><strong>Conclusion: </strong>Until now, its anticancer mechanism is not yet fully explored. A limited number of research studies have been conducted on carvacrol. It possesses both cancer prevention and cancer therapeutic properties. This molecule needs more validatory research so that it can be analyzed precisely.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 5","pages":"542-558"},"PeriodicalIF":2.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. 白藜芦醇增强阿霉素和顺铂化疗:一种新的治疗策略。
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-02-23 DOI: 10.2174/1874467215666220415131344
Sepideh Mirzaei, Mohammad Hossein Gholami, Amirhossein Zabolian, Hossein Saleki, Morteza Bagherian, Seyed Mohammadreza Torabi, Seyed Omid Sharifzadeh, Kiavash Hushmandi, Kaila R Fives, Haroon Khan, Milad Ashrafizadeh, Ali Zarrabi, Anupam Bishayee
{"title":"Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy.","authors":"Sepideh Mirzaei,&nbsp;Mohammad Hossein Gholami,&nbsp;Amirhossein Zabolian,&nbsp;Hossein Saleki,&nbsp;Morteza Bagherian,&nbsp;Seyed Mohammadreza Torabi,&nbsp;Seyed Omid Sharifzadeh,&nbsp;Kiavash Hushmandi,&nbsp;Kaila R Fives,&nbsp;Haroon Khan,&nbsp;Milad Ashrafizadeh,&nbsp;Ali Zarrabi,&nbsp;Anupam Bishayee","doi":"10.2174/1874467215666220415131344","DOIUrl":"https://doi.org/10.2174/1874467215666220415131344","url":null,"abstract":"<p><strong>Background: </strong>The treatment of cancer is a current challenge for public health, causing high rates of morbidity and mortality worldwide. Doxorubicin (DOX) and cisplatin (CP) are two well-known chemotherapeutic agents approved by the Food and Drug Administration to treat cancer patients. However, there are two problems associated with DOX and CP: drug resistance and adverse impact. Resveratrol (Res) belongs to the stilbene class and possesses various health-promoting effects, such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective effects.</p><p><strong>Objective: </strong>The present review aims to give special attention to the therapeutic impacts of Res in potentiating DOX and CP's antitumor activities and reducing their side effects.</p><p><strong>Methods: </strong>PubMed, Science Direct, and Google Scholar were used to search articles for the current manuscripts.</p><p><strong>Results: </strong>Co-administration of Res can prevent chemoresistance and potentiate the induction of apoptosis and cell cycle arrest in cancer cells. Res can enhance the sensitivity of cancer cells to DOX and CP chemotherapy by inhibiting the migration and metastasis of cancer cells. Simultaneously, Res, due to its therapeutic actions ameliorates the adverse impacts of DOX and CP on normal cells and organs, including the liver, kidney, brain, and testes. As Res suffers from poor bioavailability, nanoformulations have been developed with promising results to improve its antitumor activity and protective effects.</p><p><strong>Conclusion: </strong>Based on preclinical studies, it is obvious that Res is a promising adjsuvant for CP and DOX chemotherapy, and its benefits can be utilized in the clinical course.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 3","pages":"280-306"},"PeriodicalIF":2.7,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9493601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration. 二甲双胍的治疗作用:聚焦于Nrf2信号通路和氧化应激改善。
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-01-01 DOI: 10.2174/1874467215666220620143655
Mohammad Yassin Zamanian, Lydia Giménez-Llort, Marjan Nikbakhtzadeh, Zahra Kamiab, Mahsa Heidari, Gholamreza Bazmandegan
{"title":"The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration.","authors":"Mohammad Yassin Zamanian,&nbsp;Lydia Giménez-Llort,&nbsp;Marjan Nikbakhtzadeh,&nbsp;Zahra Kamiab,&nbsp;Mahsa Heidari,&nbsp;Gholamreza Bazmandegan","doi":"10.2174/1874467215666220620143655","DOIUrl":"https://doi.org/10.2174/1874467215666220620143655","url":null,"abstract":"<p><p>In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 3","pages":"331-345"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9195059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade. Neuropilin-2通过MiR-331-3p调控级联抑制黑色素瘤的耐药和进展
IF 2.7 4区 生物学
Current molecular pharmacology Pub Date : 2023-01-01 DOI: 10.2174/1874467216666221220111756
Qun Xie, Ruirui Zhang, Dandan Liu, Jing Yang, Qiang Hu, Chao Shan, Xiaohan Li
{"title":"Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade.","authors":"Qun Xie,&nbsp;Ruirui Zhang,&nbsp;Dandan Liu,&nbsp;Jing Yang,&nbsp;Qiang Hu,&nbsp;Chao Shan,&nbsp;Xiaohan Li","doi":"10.2174/1874467216666221220111756","DOIUrl":"https://doi.org/10.2174/1874467216666221220111756","url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.</p><p><strong>Objective: </strong>The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.</p><p><strong>Methods: </strong>RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.</p><p><strong>Results: </strong>Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.</p><p><strong>Conclusion: </strong>The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 7","pages":"787-799"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信