Heba M Abdel-Aziz, Nahla E Ibrahem, Noura H Mekawy, Amal Fawzy, Noura Mostafa Mohamad, Walaa Samy
{"title":"尼可地尔与骨髓间充质干细胞对成年雄性白化大鼠输尿管梗阻的治疗作用。","authors":"Heba M Abdel-Aziz, Nahla E Ibrahem, Noura H Mekawy, Amal Fawzy, Noura Mostafa Mohamad, Walaa Samy","doi":"10.2174/1874467215666220322113734","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease is a global health problem for which renal fibrogenesis is the final treatment target.</p><p><strong>Objective: </strong>In our work, we have highlighted two new strategies, nicorandil and Bone marrow-derived mesenchymal stem cells (BM-MSCs), as effective in reversing renal fibrosis induced by partial unilateral ureteral obstruction (PUUO).</p><p><strong>Methods: </strong>The current study included 96 male albino rats randomly divided into four groups, with 24 rats per group; Group I, the control group; Group II, PUUO, where two-thirds of the left ureter was entrenched in the psoas muscle; Group III, same surgical procedure as in Group II for 7 days, and then the rats received 15 mg/kg/day nicorandil once daily for 21 days; and Group IV, same surgical procedure as in Group II for 7 days, and then rats were given 3 × 106 of labeled MSCs injected intravenous, and left for 21 days. Blood and kidney tissues were collected for biochemical, histological, and molecular analyses.</p><p><strong>Results: </strong>Both the nicorandil and BM-MSCs treatment groups could ameliorate kidney damage evidenced by inhibition of MDA elevation and total antioxidant capacity reduction caused by PUUO. Also, there was a significant reduction observed in TNF, TGF, IL6, collagen I, and α-SMA in addition to improvement in histological examination. However, a significant difference was found between the BM-MSCs and nicorandil-treated groups.</p><p><strong>Conclusion: </strong>Our results suggest that BM-MSCs and nicorandil improved renal fibrosis progression through their antiapoptotic, anti-inflammatory, and antifibrotic effects in male albino rats subjected to PUUO, with BM-MSCs being more effective compared to nicorandil.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 1","pages":"124-138"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nicorandil and Bone Marrow-derived Mesenchymal Stem Cells Therapeutic Effect after Ureteral Obstruction in Adult Male Albino Rats.\",\"authors\":\"Heba M Abdel-Aziz, Nahla E Ibrahem, Noura H Mekawy, Amal Fawzy, Noura Mostafa Mohamad, Walaa Samy\",\"doi\":\"10.2174/1874467215666220322113734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic kidney disease is a global health problem for which renal fibrogenesis is the final treatment target.</p><p><strong>Objective: </strong>In our work, we have highlighted two new strategies, nicorandil and Bone marrow-derived mesenchymal stem cells (BM-MSCs), as effective in reversing renal fibrosis induced by partial unilateral ureteral obstruction (PUUO).</p><p><strong>Methods: </strong>The current study included 96 male albino rats randomly divided into four groups, with 24 rats per group; Group I, the control group; Group II, PUUO, where two-thirds of the left ureter was entrenched in the psoas muscle; Group III, same surgical procedure as in Group II for 7 days, and then the rats received 15 mg/kg/day nicorandil once daily for 21 days; and Group IV, same surgical procedure as in Group II for 7 days, and then rats were given 3 × 106 of labeled MSCs injected intravenous, and left for 21 days. Blood and kidney tissues were collected for biochemical, histological, and molecular analyses.</p><p><strong>Results: </strong>Both the nicorandil and BM-MSCs treatment groups could ameliorate kidney damage evidenced by inhibition of MDA elevation and total antioxidant capacity reduction caused by PUUO. Also, there was a significant reduction observed in TNF, TGF, IL6, collagen I, and α-SMA in addition to improvement in histological examination. However, a significant difference was found between the BM-MSCs and nicorandil-treated groups.</p><p><strong>Conclusion: </strong>Our results suggest that BM-MSCs and nicorandil improved renal fibrosis progression through their antiapoptotic, anti-inflammatory, and antifibrotic effects in male albino rats subjected to PUUO, with BM-MSCs being more effective compared to nicorandil.</p>\",\"PeriodicalId\":10865,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":\"16 1\",\"pages\":\"124-138\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1874467215666220322113734\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467215666220322113734","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nicorandil and Bone Marrow-derived Mesenchymal Stem Cells Therapeutic Effect after Ureteral Obstruction in Adult Male Albino Rats.
Background: Chronic kidney disease is a global health problem for which renal fibrogenesis is the final treatment target.
Objective: In our work, we have highlighted two new strategies, nicorandil and Bone marrow-derived mesenchymal stem cells (BM-MSCs), as effective in reversing renal fibrosis induced by partial unilateral ureteral obstruction (PUUO).
Methods: The current study included 96 male albino rats randomly divided into four groups, with 24 rats per group; Group I, the control group; Group II, PUUO, where two-thirds of the left ureter was entrenched in the psoas muscle; Group III, same surgical procedure as in Group II for 7 days, and then the rats received 15 mg/kg/day nicorandil once daily for 21 days; and Group IV, same surgical procedure as in Group II for 7 days, and then rats were given 3 × 106 of labeled MSCs injected intravenous, and left for 21 days. Blood and kidney tissues were collected for biochemical, histological, and molecular analyses.
Results: Both the nicorandil and BM-MSCs treatment groups could ameliorate kidney damage evidenced by inhibition of MDA elevation and total antioxidant capacity reduction caused by PUUO. Also, there was a significant reduction observed in TNF, TGF, IL6, collagen I, and α-SMA in addition to improvement in histological examination. However, a significant difference was found between the BM-MSCs and nicorandil-treated groups.
Conclusion: Our results suggest that BM-MSCs and nicorandil improved renal fibrosis progression through their antiapoptotic, anti-inflammatory, and antifibrotic effects in male albino rats subjected to PUUO, with BM-MSCs being more effective compared to nicorandil.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.