{"title":"Optimization of Maintenance Strategy for Sea Water Pumps in Nuclear Plants","authors":"Ling Zhao, Deyi Liu, Mingsha Zhao","doi":"10.1115/icone28-65720","DOIUrl":"https://doi.org/10.1115/icone28-65720","url":null,"abstract":"\u0000 Probabilistic Safety Analysis (PSA) methodology is a significant supplement to the deterministic safety analysis in the nuclear power plant. PSA can be used to evaluate the NPP device change, equipment maintenance, in service inspection. The practicability of modifying sea water pump maintenance programme is evaluated in this paper by determining the initial event probability in fault-tree and modifying the PSA calculation model. Based on the evaluation results, the preventive maintenance of sea water pump and 6kv switch can be changed from executed in the plant overhaul to executed in the routine maintenance. This could make a great contribution in optimizing the NPP sea water pump maintenance program.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127289477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qunxiang Gao, Laijun Wang, W. Peng, Ping Zhang, Gangyong Zhao
{"title":"Numerical Simulation of Hi Thermal Decomposer in Iodine-Sulfur Cycle Process","authors":"Qunxiang Gao, Laijun Wang, W. Peng, Ping Zhang, Gangyong Zhao","doi":"10.1115/icone28-64449","DOIUrl":"https://doi.org/10.1115/icone28-64449","url":null,"abstract":"\u0000 The very high-temperature gas-cooled reactor is a fourth-generation reactor with inherent safety and modular high-temperature characteristics. Utilizing ultra-high temperature heat to produce hydrogen by iodine-sulfur cycle is one of the important applications. In this process, the decomposition of hydroiodic acid determines the efficiency of hydrogen production, so it is important to design a hydroiodic acid decomposer with the compact structure and good heat preservation. In this paper, numerical simulations are performed on the hydroiodic acid decomposer used for the decomposition of hydroiodic acid. The species transport model, volume reaction and porous model are used to calculate the temperature field and the distribution of each component. The results show that the temperature of the catalytic zone meets the reaction requirements, the temperature drop in the reactor is about 55 K, and the overall decomposition fraction can reach 21.4%. The current flow rate has an acceptable performance for the improvement of the decomposition rate. The results of this study can provide theoretical calculation references for the engineering application of hydroiodic acid decomposers.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125949641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Effective Momentum Model for Steam Injection Through Multi-Hole Spargers: Unit Cell Model","authors":"Xicheng Wang, D. Grishchenko, P. Kudinov","doi":"10.1115/icone28-65751","DOIUrl":"https://doi.org/10.1115/icone28-65751","url":null,"abstract":"\u0000 The Steam injection through multi-hole spargers into the pressure suppression pool (PSP) is used in light water reactors to prevent containment over-pressure. The development of thermal stratification in the PSP can reduce its cooling capacity and results in higher containment pressures compared to completely mixed pool conditions. Explicit modelling of direct contact condensation (DCC) of steam at the steam-water interface is a challenge for contemporary codes. Effective Heat Source (EHS) and Effective Momentum Source (EMS) models have been proposed to enable the prediction of thermal stratification and mixing transients induced by steam condensation in a large pool. The general idea of the EHS/EMS is to resolve the effect of the DCC phenomena on a large pool, instead of explicit modelling of the small-scale phenomena at steam-water interface.\u0000 The EHS/EMS models can be implemented using (i) respective boundary conditions at the boundary of the Steam Condensation Region (SCR) or (ii) using source terms in the heat and momentum transport equations. In previous work, EHS/EMS models were implemented using the second approach and validated against data from PPOOLEX and PANDA tests. It was found that results are sensitive to the spatial distribution of the source terms. Since the current data are not sufficient to provide a reasonable distribution, a preliminary study of the first method was done in this paper.\u0000 The goal of this work is to develop a ‘Unit Cell’ model by using respective boundary conditions for steam injection through multi-hole sparger. The condensed turbulent jet is resolved by introducing the liquid jet with the same effective momentum and heat as the injected steam. A uniform velocity profile solved by EMS model and the temperature boundary solved by EHS model is provided on each injection hole of the sparger wall. Validation is conducted against sparger test in PANDA facilities.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"374 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126172555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suubi Racheal, Yong-kuo Liu, M. Ernest, A. Ayodeji
{"title":"A Systematic Review of PCTRAN-Based Pressurized Water Reactor Transient Analysis","authors":"Suubi Racheal, Yong-kuo Liu, M. Ernest, A. Ayodeji","doi":"10.1115/icone28-65663","DOIUrl":"https://doi.org/10.1115/icone28-65663","url":null,"abstract":"\u0000 The impact of nuclear accidents has been a topic of debate since the construction of the first nuclear reactor, and still stands as a key issue of public concern. Several codes and simulators have been used to study the transient progression in pressurized water reactors, and to evaluate the technical measures adopted to scale down the risk of accidents. However, some of these codes are not suitable for multipurpose research and training as they require significant user expertise, leading to analysis uncertainties largely from the code user effect. This paper presents a bird-eye view of one of the most widely used nuclear reactor transient analyzer — the Personal Computer Transient Analyzer (PCTRAN). This paper discusses the comparative advantages of the simulator from the users’ perspective, with specific attention to its utilization both for research and training. The paper also demonstrates the ease of usage by simulating common transient in a pressurized water reactor. Finally, observations and possible improvements to the code to increase its usability in research, education and training are discussed. This work aims to evaluate the robustness of the simulator towards better utilization for research and training, especially in nuclear newcomer countries.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125574255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of Conversion Ratio of Thorium Fuel in LWR by Adding Neutron Absorber","authors":"Taichi Takeishi, S. Takeda, T. Kitada","doi":"10.1115/icone28-65683","DOIUrl":"https://doi.org/10.1115/icone28-65683","url":null,"abstract":"\u0000 The reproduction factor of Th232 is high in the thermal energy range and there is a possibility to achieve the breeding in LWRs. However, it is necessary to improve the conversion ratio since the breeding is difficult in LWRs. The conversion ratio can be improved by suppressing capture rate of Pa233 and by promoting capture rate of Th232. In addition, these capture rates can be modified by adding neutron absorber. Therefore, the neutron absorber is focused for improving the conversion ratio in this study.\u0000 The high resonance peaks of Pa233 capture cross section exist around 1∼100 eV. The resonance peaks of Th232 are higher than 10 eV. Thus, when the 1∼10 eV neutrons are suppressed in the fuel, the Pa233 resonance capture reaction is suppressed and the Th232 resonance capture reaction is promoted by neutron spectrum hardening. Therefore, six neutron absorbers that have high capture cross section peaks at 1∼10 eV were selected. The PWR pin cell calculations were carried out by Monte Carlo code MVP. The fuels are composed of a base material and an absorber. The base material is an oxidized fuel composed of U233(10 wt%), Th232(89.95 wt%), and Pa233(0.05 wt%). The amount of neutron absorber was adjusted so that the infinite multiplication factor becomes 1.33.\u0000 The impact of adding neutron absorber on the reaction rate was evaluated. As the result, the hardening of the neutron spectrum leads increase of the capture rate of Pa233, and the capture rate of Th232 in the epithermal energy range is increased. The change of capture rate of Th232 is greater than that of Pa232. Therefore, the conversion ratio is found to be improved by adding neutron absorber.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122932120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"U.S. Nuclear Power Plant Performance Assessment Using the Versatile Economic Risk Tool (VERT)","authors":"Jaden C. Miller, S. Ercanbrack, C. Pope","doi":"10.1115/icone28-65769","DOIUrl":"https://doi.org/10.1115/icone28-65769","url":null,"abstract":"\u0000 This paper addresses the use of a new nuclear power plant performance risk analysis tool. The new tool is called Versatile Economic Risk Tool (VERT). VERT couples Idaho National Laboratory’s SAPHIRE and RAVEN software packages. SAPHIRE is traditionally used for performing probabilistic risk assessment and RAVEN is a multi-purpose uncertainty quantification, regression analysis, probabilistic risk assessment, data analysis and model optimization software framework. Using fault tree models, degradation models, reliability data, and economic information, VERT can assess relative system performance risks as a function of time. Risk can be quantified in megawatt hours (MWh) which can be converted to dollars. To demonstrate the value of VERT, generic pressurized water reactor and boiling water reactor fault tree models were developed along with time dependent reliability data to investigate the plant systems, structures, and components that impacted performance from the year 1980 to 2020. The results confirm the overall notion that US nuclear power plant industry operational performance has been improving since 1980. More importantly, the results identify equipment that negatively or positively impact performance. Thus, using VERT, individual plant operators can target systems, structures, and components that merit greater attention from a performance perspective.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128617972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High Flux Reactor Review and Reactivity Control Analysis","authors":"Wang Lin, Xu Wei, Xie Fei","doi":"10.1115/icone28-64723","DOIUrl":"https://doi.org/10.1115/icone28-64723","url":null,"abstract":"\u0000 For over 60 years, research reactors have provided the world with a versatile tool to test materials and promote irradiation research, as well as to produce radioisotopes for medical treatments. The High Flux Reactor (HFR), as a water moderated and cooled, beryllium-reflected reactor has awarded more attention in recent years. There is a wide range of designs and applications for HFRs that based on their own situation to meet research requirements. For the purpose of reducing the volume and mass of the reactor, as well as ensuring the safety operation, it is necessary to determine the most effective reactivity control scheme, and analyze the corresponding reactivity insertion accidents. This paper is going to investigate typical high flux reactors within the same type with HFETR, summarize general description and characteristics, the uses of the high flux reactor, and reactivity control mechanisms. In addition, the associated reactivity insertion accidents were presented and analyzed. The analysis result will provide some references to further design and construction of high flux reactor.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128105247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Heat Transfer Coefficient of Supercritical Water Based on Factorial Analysis","authors":"Peng Xu, T. Zhou, N. Chen, J. Chen, Zhongguan Fu","doi":"10.1115/icone28-63216","DOIUrl":"https://doi.org/10.1115/icone28-63216","url":null,"abstract":"\u0000 Heat transfer coefficient has an important influence on the flow and heat transfer of supercritical water in the core channels. The effects of different factors and their interactions on the heat transfer coefficient of the supercritical water were studied by full factorial experimental design method, such as pressure, mass flow rate, heat flux, and inlet temperature. The results show that: Within the range of the tested working conditions, effect D (inlet temperature), effect B (mass flow rate) and effect A (pressure) had a significant impact on the heat transfer coefficient, where the percentage contribution of effect D was 48.21%; effect B was 21.58%; effect A was 15.1%. The percentage contribution of other factors and their interactions on the heat transfer coefficient of the supercritical water can be ignored. At the same time, a prediction formula of heat transfer coefficient on supercritical water was fitted, and it was found that the prediction error of this formula conformed to the assumption of normality, and the prediction error was 10.5%.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130173377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Study on Radiation Imaging Mechanism and Characteristics in Different Inspection Systems","authors":"Yuting Xu, Zhifang Wu, Qiang Wang","doi":"10.1115/icone28-66127","DOIUrl":"https://doi.org/10.1115/icone28-66127","url":null,"abstract":"\u0000 Radiation imaging, as a key issue in nuclear technology, has received considerable attention in the industry. It is widely used in nuclear medicine, Customs supervision, and many other areas. The objective of this investigation is to get insight into the principle, operation characteristics and image characteristics of radiation imaging.\u0000 In this paper, an investigation on radiation imaging is conducted on three main inspection systems for Customs supervision, including small X-ray inspection machine, CT baggage inspection system, and large container inspection system. The principle, operation characteristics, evaluation indexes, pseudo-color processing and image characteristics are discussed in detail. The results indicate that the spatial resolution of small X-ray inspection machine is much higher than that of CT baggage/goods inspection system and large container/vehicle inspection system. It is a challenge to identify substances and specific shapes in the case of overlapping for small X-ray inspection system.\u0000 Moreover, the mechanism of X-ray images is discussed as well. The radiation images are divided into three types, including two-dimensional, pseudo-color, high spatial resolution; two-dimensional, gray, high spatial resolution; three-dimensional, pseudo-color, high density resolution. The further investigation on machine inspection images is suggested to focus on the application environment. For some objects with specific characteristics, such as amorphous, explosive, the CT baggage inspection has much better performance than other systems.\u0000 The research in this paper reveals the mechanism, parametric effect and imaging characteristics. It could provide a necessary foundation for the follow-up intelligent processing, detection, identification and annotation for radiation imaging in nuclear area. The research on inspection devices could lend strong experience to medical treatment, industry and many other fields.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134273917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang Zhang, M. Peng, Tenglong Cong, Chuan Lu, Chenyang Wang
{"title":"Implementation and Validation of an Improved Interfacial Area Concentration Model for Two-Phase Flow CFD Simulations","authors":"Xiang Zhang, M. Peng, Tenglong Cong, Chuan Lu, Chenyang Wang","doi":"10.1115/icone28-64342","DOIUrl":"https://doi.org/10.1115/icone28-64342","url":null,"abstract":"\u0000 The interfacial area concentration (IAC) is an important parameter in the calculation of interfacial transfers in two-fluid model, which can affect the accuracy of the boiling simulations. In this paper, an improved IAC model based on drag force and drift velocity is obtained, which can make full use of the experimental data and the models of the drag force and the drift velocity to avoid the shortage of IAC algebraic model in two-phase flow simulations theoretically. The improved model is validated by the DEBORA boiling flow experiment data. The reasonable radial distributions of void fraction, liquid temperature and phase velocity can be obtained, which indicates that the improved IAC model coupled in boiling flow model can be applied in CFD simulation of two-phase boiling flow. The improved model provides a new calculation approach for the IAC in the boiling flow with multi flow regimes.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"3 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134311797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}